• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quasi-morphismes et difféomorphismes hamiltoniens

Py, Pierre 04 February 2008 (has links) (PDF)
Dans ce travail, nous étudions différents invariants de nature algébrique et dynamique définis sur le groupe des difféomorphismes hamiltoniens d'une surface fermée orientée. Occasionnellement, nous considérerons également le groupe des difféomorphismes hamiltoniens de certaines variétés symplectiques de dimension supérieure. Ces invariants peuvent être vus comme des généralisations du nombre de rotation de Poincaré, et des vecteurs de rotations associés aux difféomorphismes des surfaces. D'autre part, tous ces invariants sont reliés à la théorie de la cohomologie bornée. <br /><br />Dans le premier chapitre nous construisons des quasi-morphismes sur le groupe des difféomorphismes hamiltoniens d'une surface de genre strictement positif, qui sont des homomorphismes en restriction au sous-groupe des difféomorphismes à support dans un ouvert difféomorphe à un disque. Ces constructions sont motivées par une question de Entov et Polterovich. Dans le second chapitre nous construisons un quasi-morphisme défini sur le revêtement universel du groupe des difféomorphismes hamiltoniens d'une variété symplectique monotone. <br /><br />Le troisième chapitre contient quelques résultats concernant les actions préservant l'aire sur les surfaces de réseaux dans les groupes de Lie semi-simples. Dans l'esprit du "programme de Zimmer", nous montrons comment l'existence de nombreux quasi-morphismes, combinée avec des théorèmes d'annulation en cohomologie bornée, pourrait être utile pour exclure l'existence d'actions de réseaux de rang supérieur. Le dernier chapitre contient quelques remarques autour de la distance de Hofer.
2

Inégalités de von Neumann sous contraintes, image numérique de rang supérieur et applications à l'analyse harmonique

Gaaya, Haykel 05 December 2011 (has links) (PDF)
Cette thèse s'inscrit dans le domaine de la théorie des opérateurs. L'un des opérateurs qui m'a particulièrement intéressé est l'opérateur modèle noté S(Φ) qui désigne la compression du shift unilatéral S sur l'espace modèle H(Φ) où Φ est une fonction intérieure. L'étude du rayon numérique de S(Φ) semble être importante comme l'illustre bien un résultat dû à C. Badea et G. Cassier qui ont montré qu'il existe un lien entre le rayon numérique de tels opérateurs et l'estimation des coefficients des fractions rationnelles positives sur le tore. Nous fournissons une extension de leur résultat et nous trouvons une expression explicite du rayon numérique de S(Φ) dans le cas particulier où Φ est un produit de Blaschke fini avec un unique zéro. Dans le cas général où Φ est un produit de Blaschke fini quelconque, une estimation du rayon numérique de S(Φ) est aussi donnée. Dans la deuxième partie de cette thèse on s'est intéressé à l'image numérique de rang supérieur Λk(T) qui est l'ensemble de tous les nombres complexes λ vérifiant PTP = λP pour une certaine projection orthogonale P de rang k . Cette notion a été introduite récemment par M.-D. Choi, D. W. Kribs, et K. Zyczkowski et elle est utilisée pour certains problèmes en physique. On montre que l'image numérique de rang supérieur du shift n-dimensionnel coïncide avec un disque de rayon bien déterminé
3

Dynamique d'action de groupes dans des espaces homogènes de rang supérieur et de volume infini / Dynamics of group action on homogeneous spaces of higher rank and infinite volume

Dang, Nguyen-Thi 23 September 2019 (has links)
Soit G un groupe de Lie semisimple (de rang supérieur) et Γ un sous-groupe discret Zariski dense de G (de covolume infini). Dans cette thèse, on traite de deux questions reliées au cône limite de Benoist de Γ : l’une de marche aléatoire et l’autre de mélange topologique du flot directionnel des chambres de Weyl. Dans l’introduction, on énonce les résultats principaux de cette thèse dans leur contexte. Le second chapitre comporte des rappels sur les groupes de Lie et les éléments loxodromiques. Dans le troisième chapitre, on réalise tous les points de l’intérieur du cône limite par des vecteurs de Lyapunov. Dans le quatrième chapitre, on construit des coordonnées locales de G ainsi que des outils cruciaux pour la suite. Dans le cinquième chapitre, on introduit les ensembles invariants naturels de G. Dans le dernier chapitre de cette thèse, on prouve le critère de mélange topologique des flots directionnels réguliers des chambres de Weyl obtenu avec O. Glorieux et on généralise partiellement ce critère de mélange à Γ\G pour une classe de groupes de Lie incluant SL(n, R), SL(n, C), SO (p, p + 2). / Let G be a semisimple Lie group (of higher rank) and Γ a Zariski dense subgroup of G (of infinite covolume). In this thesis, we discuss two questions related to the Benoist limit cone of Γ : one concerns random walks, the other topological mixing of the directional Weyl chamber flow. In the introduction, we state the main results of this thesis in their context. In the second chapter, we recall some general facts about Lie groups and loxodromic elements. In the third chapter, we prove that every point of the interior of the limit cone is a Lyapunov vector. In the fourth chapter, we construct local coordinates of G and give key tools for the remaining parts. In the fifth chapter, we introduce the invariant subsets of G. In the last chapter of this thesis, we prove the topological mixing criterion of regular directional Weyl chamber flow obtained with O. Glorieux and we generalize this criterion to Γ\G for a class of Lie groups including SL(n, R), SL(n, C), SO(p, p + 2).
4

Inégalités de von Neumann sous contraintes, image numérique de rang supérieur et applications à l’analyse harmonique / Constrained von Neumann inequalities, higher rank numarical range and applications to harmonic analysis

Gaaya, Haykel 05 December 2011 (has links)
Cette thèse s’inscrit dans le domaine de la théorie des opérateurs. L’un des opérateurs qui m’a particulièrement intéressé est l’opérateur modèle noté S(Φ) qui désigne la compression du shift unilatéral S sur l’espace modèle H(Φ) où Φ est une fonction intérieure. L’étude du rayon numérique de S(Φ) semble être importante comme l’illustre bien un résultat dû à C. Badea et G. Cassier qui ont montré qu’il existe un lien entre le rayon numérique de tels opérateurs et l’estimation des coefficients des fractions rationnelles positives sur le tore. Nous fournissons une extension de leur résultat et nous trouvons une expression explicite du rayon numérique de S(Φ) dans le cas particulier où Φ est un produit de Blaschke fini avec un unique zéro. Dans le cas général où Φ est un produit de Blaschke fini quelconque, une estimation du rayon numérique de S(Φ) est aussi donnée. Dans la deuxième partie de cette thèse on s’est intéressé à l’image numérique de rang supérieur Λk(T) qui est l’ensemble de tous les nombres complexes λ vérifiant PTP = λP pour une certaine projection orthogonale P de rang k . Cette notion a été introduite récemment par M.-D. Choi, D. W. Kribs, et K. Zyczkowski et elle est utilisée pour certains problèmes en physique. On montre que l’image numérique de rang supérieur du shift n-dimensionnel coïncide avec un disque de rayon bien déterminé / This thesis joins in the field of operator theory. We are specially interested by the extremal operator S(Φ) defined by the compression of the unilateral shift S to the model subspace H(Φ) where Φ is an inner function on the unit disc. The numerical radius of S(Φ) seems to be important and have many applications to harmonic analysis. C. Badea and G. Cassier showed that there is a relationship between the numerical radius of such operators and the Taylor coefficients of positive rational functions. We give an extension of C. Badea and G. Cassier result and an explicit formula of the numerical radius of S(Φ) in the particular case where Φ is a finite Blaschke product with unique zero. An estimate in the general case is also established. The second part is devoted to the study of the higher rank-k numerical range denoted by Λk(T) which is the set of all complex number λ satisfying PTP = λP for some rank-k orthogonal projection P. This notion was introduced by M.-D. Choi, D. W. Kribs, et K. Zyczkowski motivated by a problem in Physics. We show that if Sn is the n-dimensional shift then its rank-k numerical range is the circular discentered in zero and with a precise radius

Page generated in 0.0712 seconds