• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 10
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A family of higher-rank graphs arising from subshifts

Weaver, Natasha January 2009 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / There is a strong connection between directed graphs and the shifts of finite type which are an important family of dynamical systems. Higher-rank graphs (or k-graphs) and their C*-algebras were introduced by Kumjian and Pask to generalise directed graphs and their C*-algebras. Kumjian and Pask showed how higher-dimensional shifts of finite type can be associated to k-graphs, but did not discuss how one might associate k-graphs to k-dimensional shifts of finite type. In this thesis we construct a family of 2-graphs A arising from a certain type of algebraic two-dimensional shift of finite type studied by Schmidt, and analyse the structure of their C*-algebras. Graph algebras and k-graph algebras provide a rich source of examples for the classication of simple, purely infinite, nuclear C*-algebras. We give criteria which ensure that the C*-algebra C*(A) is simple, purely infinite, nuclear, and satisfies the hypotheses of the Kirchberg-Phillips Classification Theorem. We perform K-theory calculations for a wide range of our 2-graphs A using the Magma computational algebra system. The results of our calculations lead us to conjecture that the K-groups of C*(A) are finite cyclic groups of the same order. We are able to prove under mild hypotheses that the K-groups have the same order, but we have only numerical evidence to suggest that they are cyclic. In particular, we find several examples for which K1(C*(A)) is nonzero and has torsion, hence these are examples of 2-graph C*-algebras which do not arise as the C*-algebras of directed graphs. Finally, we consider a subfamily of 2-graphs with interesting combinatorial connections. We identify the nonsimple C*-algebras of these 2-graphs and calculate their K-theory.
2

C*-algebras associated to higher-rank graphs

Sims, Aidan Dominic January 2003 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / Directed graphs are combinatorial objects used to model networks like fluid-flow systems in which the direction of movement through the network is important. In 1980, Enomoto and Watatani used finite directed graphs to provide an intuitive framework for the Cuntz-Krieger algebras introduced by Cuntz and Krieger earlier in the same year. The theory of the C*-algebras of directed graphs has since been extended to include infinite graphs, and there is an elegant relationship between connectivity and loops in a graph and the structure theory of the associated C*-algebra. Higher-rank graphs are a higher-dimensional analogue of directed graphs introduced by Kumjian and Pask in 2000 as a model for the higher-rank Cuntz-Krieger algebras introduced by Robertson and Steger in 1999. The theory of the Cuntz-Krieger algebras of higher-rank graphs is relatively new, and a number of questions which have been answered for directed graphs remain open in the higher-rank setting. In particular, for a large class of higher-rank graphs, the gauge-invariant ideal structure of the associated C*-algebra has not yet been identified. This thesis addresses the question of the gauge-invariant ideal structure of the Cuntz-Krieger algebras of higher-rank graphs. To do so, we introduce and analyse the collections of relative Cuntz-Krieger algebras associated to higher-rank graphs. The first two main results of the thesis are versions of the gauge-invariant uniqueness theorem and the Cuntz-Krieger uniqueness theorem which apply to relative Cuntz-Krieger algebras. Using these theorems, we are able to achieve our main goal, producing a classification of the gauge-invariant ideals in the Cuntz-Krieger algebra of a higher-rank graph analogous to that developed for directed graphs by Bates, Hong, Raeburn and Szymañski in 2002. We also demonstrate that relative Cuntz-Krieger algebras associated to higher-rank graphs are always nuclear, and produce conditions on a higher-rank graph under which the associated Cuntz-Krieger algebra is simple and purely infinite.
3

The Adjoint Action of an Expansive Algebraic Z$^d$--Action

Klaus.Schmidt@univie.ac.at 18 June 2001 (has links)
No description available.
4

Irreducibility, Homoclinic Points and Adjoint Actions of Algebraic Z$^d$--Actions of Rank One

Klaus.Schmidt@univie.ac.at 14 September 2001 (has links)
No description available.
5

Functorial Results for C*-Algebras of Higher-Rank Graphs

January 2016 (has links)
abstract: Higher-rank graphs, or k-graphs, are higher-dimensional analogues of directed graphs, and as with ordinary directed graphs, there are various C*-algebraic objects that can be associated with them. This thesis adopts a functorial approach to study the relationship between k-graphs and their associated C*-algebras. In particular, two functors are given between appropriate categories of higher-rank graphs and the category of C*-algebras, one for Toeplitz algebras and one for Cuntz-Krieger algebras. Additionally, the Cayley graphs of finitely generated groups are used to define a class of k-graphs, and a functor is then given from a category of finitely generated groups to the category of C*-algebras. Finally, functoriality is investigated for product systems of C*-correspondences associated to k-graphs. Additional results concerning the structural consequences of functoriality, properties of the functors, and combinatorial aspects of k-graphs are also included throughout. / Dissertation/Thesis / Masters Thesis Mathematics 2016
6

Variations on Artin's Primitive Root Conjecture

FELIX, ADAM TYLER 11 August 2011 (has links)
Let $a \in \mathbb{Z}$ be a non-zero integer. Let $p$ be a prime such that $p \nmid a$. Define the index of $a$ modulo $p$, denoted $i_{a}(p)$, to be the integer $i_{a}(p) := [(\mathbb{Z}/p\mathbb{Z})^{\ast}:\langle a \bmod{p} \rangle]$. Let $N_{a}(x) := \#\{p \le x:i_{a}(p)=1\}$. In 1927, Emil Artin conjectured that \begin{equation*} N_{a}(x) \sim A(a)\pi(x) \end{equation*} where $A(a)>0$ is a constant dependent only on $a$ and $\pi(x):=\{p \le x: p\text{ prime}\}$. Rewrite $N_{a}(x)$ as follows: \begin{equation*} N_{a}(x) = \sum_{p \le x} f(i_{a}(p)), \end{equation*} where $f:\mathbb{N} \to \mathbb{C}$ with $f(1)=1$ and $f(n)=0$ for all $n \ge 2$.\\ \indent We examine which other functions $f:\mathbb{N} \to \mathbb{C}$ will give us formul\ae \begin{equation*} \sum_{p \le x} f(i_{a}(p)) \sim c_{a}\pi(x), \end{equation*} where $c_{a}$ is a constant dependent only on $a$.\\ \indent Define $\omega(n) := \#\{p|n:p \text{ prime}\}$, $\Omega(n) := \#\{d|n:d \text{ is a prime power}\}$ and $d(n):=\{d|n:d \in \mathbb{N}\}$. We will prove \begin{align*} \sum_{p \le x} (\log(i_{a}(p)))^{\alpha} &= c_{a}\pi(x)+O\left(\frac{x}{(\log x)^{2-\alpha-\varepsilon}}\right) \\ \sum_{p \le x} \omega(i_{a}(p)) &= c_{a}^{\prime}\pi(x)+O\left(\frac{x\log \log x}{(\log x)^{2}}\right) \\ \sum_{p \le x} \Omega(i_{a}(p)) &= c_{a}^{\prime\prime}\pi(x)+O\left(\frac{x\log \log x}{(\log x)^{2}}\right) \end{align*} and \begin{equation*} \sum_{p \le x} d(i_{a}) = c_{a}^{\prime\prime\prime}\pi(x)+O\left(\frac{x}{(\log x)^{2-\varepsilon}}\right) \end{equation*} for all $\varepsilon > 0$.\\ \indent We also extend these results to finitely-generated subgroups of $\mathbb{Q}^{\ast}$ and $E(\mathbb{Q})$ where $E$ is an elliptic curve defined over $\mathbb{Q}$. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2011-08-03 10:45:47.408
7

Representing Certain Continued Fraction AF Algebras as C*-algebras of Categories of Paths and non-AF Groupoids

January 2020 (has links)
abstract: C*-algebras of categories of paths were introduced by Spielberg in 2014 and generalize C*-algebras of higher rank graphs. An approximately finite dimensional (AF) C*-algebra is one which is isomorphic to an inductive limit of finite dimensional C*-algebras. In 2012, D.G. Evans and A. Sims proposed an analogue of a cycle for higher rank graphs and show that the lack of such an object is necessary for the associated C*-algebra to be AF. Here, I give a class of examples of categories of paths whose associated C*-algebras are Morita equivalent to a large number of periodic continued fraction AF algebras, first described by Effros and Shen in 1980. I then provide two examples which show that the analogue of cycles proposed by Evans and Sims is neither a necessary nor a sufficient condition for the C*-algebra of a category of paths to be AF. / Dissertation/Thesis / Doctoral Dissertation Mathematics 2020
8

Dynamique d'action de groupes dans des espaces homogènes de rang supérieur et de volume infini / Dynamics of group action on homogeneous spaces of higher rank and infinite volume

Dang, Nguyen-Thi 23 September 2019 (has links)
Soit G un groupe de Lie semisimple (de rang supérieur) et Γ un sous-groupe discret Zariski dense de G (de covolume infini). Dans cette thèse, on traite de deux questions reliées au cône limite de Benoist de Γ : l’une de marche aléatoire et l’autre de mélange topologique du flot directionnel des chambres de Weyl. Dans l’introduction, on énonce les résultats principaux de cette thèse dans leur contexte. Le second chapitre comporte des rappels sur les groupes de Lie et les éléments loxodromiques. Dans le troisième chapitre, on réalise tous les points de l’intérieur du cône limite par des vecteurs de Lyapunov. Dans le quatrième chapitre, on construit des coordonnées locales de G ainsi que des outils cruciaux pour la suite. Dans le cinquième chapitre, on introduit les ensembles invariants naturels de G. Dans le dernier chapitre de cette thèse, on prouve le critère de mélange topologique des flots directionnels réguliers des chambres de Weyl obtenu avec O. Glorieux et on généralise partiellement ce critère de mélange à Γ\G pour une classe de groupes de Lie incluant SL(n, R), SL(n, C), SO (p, p + 2). / Let G be a semisimple Lie group (of higher rank) and Γ a Zariski dense subgroup of G (of infinite covolume). In this thesis, we discuss two questions related to the Benoist limit cone of Γ : one concerns random walks, the other topological mixing of the directional Weyl chamber flow. In the introduction, we state the main results of this thesis in their context. In the second chapter, we recall some general facts about Lie groups and loxodromic elements. In the third chapter, we prove that every point of the interior of the limit cone is a Lyapunov vector. In the fourth chapter, we construct local coordinates of G and give key tools for the remaining parts. In the fifth chapter, we introduce the invariant subsets of G. In the last chapter of this thesis, we prove the topological mixing criterion of regular directional Weyl chamber flow obtained with O. Glorieux and we generalize this criterion to Γ\G for a class of Lie groups including SL(n, R), SL(n, C), SO(p, p + 2).
9

Inégalités de von Neumann sous contraintes, image numérique de rang supérieur et applications à l’analyse harmonique / Constrained von Neumann inequalities, higher rank numarical range and applications to harmonic analysis

Gaaya, Haykel 05 December 2011 (has links)
Cette thèse s’inscrit dans le domaine de la théorie des opérateurs. L’un des opérateurs qui m’a particulièrement intéressé est l’opérateur modèle noté S(Φ) qui désigne la compression du shift unilatéral S sur l’espace modèle H(Φ) où Φ est une fonction intérieure. L’étude du rayon numérique de S(Φ) semble être importante comme l’illustre bien un résultat dû à C. Badea et G. Cassier qui ont montré qu’il existe un lien entre le rayon numérique de tels opérateurs et l’estimation des coefficients des fractions rationnelles positives sur le tore. Nous fournissons une extension de leur résultat et nous trouvons une expression explicite du rayon numérique de S(Φ) dans le cas particulier où Φ est un produit de Blaschke fini avec un unique zéro. Dans le cas général où Φ est un produit de Blaschke fini quelconque, une estimation du rayon numérique de S(Φ) est aussi donnée. Dans la deuxième partie de cette thèse on s’est intéressé à l’image numérique de rang supérieur Λk(T) qui est l’ensemble de tous les nombres complexes λ vérifiant PTP = λP pour une certaine projection orthogonale P de rang k . Cette notion a été introduite récemment par M.-D. Choi, D. W. Kribs, et K. Zyczkowski et elle est utilisée pour certains problèmes en physique. On montre que l’image numérique de rang supérieur du shift n-dimensionnel coïncide avec un disque de rayon bien déterminé / This thesis joins in the field of operator theory. We are specially interested by the extremal operator S(Φ) defined by the compression of the unilateral shift S to the model subspace H(Φ) where Φ is an inner function on the unit disc. The numerical radius of S(Φ) seems to be important and have many applications to harmonic analysis. C. Badea and G. Cassier showed that there is a relationship between the numerical radius of such operators and the Taylor coefficients of positive rational functions. We give an extension of C. Badea and G. Cassier result and an explicit formula of the numerical radius of S(Φ) in the particular case where Φ is a finite Blaschke product with unique zero. An estimate in the general case is also established. The second part is devoted to the study of the higher rank-k numerical range denoted by Λk(T) which is the set of all complex number λ satisfying PTP = λP for some rank-k orthogonal projection P. This notion was introduced by M.-D. Choi, D. W. Kribs, et K. Zyczkowski motivated by a problem in Physics. We show that if Sn is the n-dimensional shift then its rank-k numerical range is the circular discentered in zero and with a precise radius
10

Local Rigidity of Some Lie Group Actions / Lokal rigiditet för några Liegruppverkan

Sandfeldt, Sven January 2020 (has links)
In this paper we study local rigidity of actions of simply connected Lie groups. In particular, we apply the Nash-Moser inverse function theorem to give sufficient conditions for the action of a simply connected Lie group to be locally rigid. Let $G$ be a Lie group, $H < G$ a simply connected subgroup and $\Gamma < G$ a cocompact lattice. We apply the result for general actions of simply connected groups to obtain sufficient conditions for the action of $H$ on $\Gamma\backslash G$ by right translations to be locally rigid. We also discuss some possible applications of this sufficient condition / I den här texten så studerar vi lokal rigiditet av gruppverkan av enkelt sammanhängande Liegrupper. Mer specifikt, vi applicerar Nash-Mosers inversa funktionssats för att ge tillräckliga villkor för att en gruppverkan av en enkelt sammanhängande grupp ska vara lokalt rigid. Låt $G$ vara en Lie grupp, $H < G$ en enkelt sammanhängande delgrupp och $\Gamma < G$ ett kokompakt gitter. Vi applicerar resultatet för generella gruppverkan av enkelt sammanhängande grupper för att få tillräckliga villkor för att verkan av $H$ på $\Gamma\backslash G$ med translationer ska vara lokalt rigid. Vi diskuterar också några möjliga tillämpningar av det tillräckliga villkoret.

Page generated in 0.048 seconds