Spelling suggestions: "subject:"dans"" "subject:"sans""
111 |
Eddy-resolving simulations of the flow around a vertical tail planeMasi, Andrea January 2018 (has links)
Enhancing the ability to predict airflow around the Vertical Tail Plane (VTP) of an aircraft is vital in the aviation industry. The size of the VTP is driven by a particular flight condition - loss of an engine during take-off and low speed climb. Nowadays, Computational Fluid Dynamics (CFD) is the main tool used by engineers to assess VTP flows. However, due to uncertainties in the prediction of VTP effectiveness, aircraft designers keep to a conservative approach, which risks oversizing of the tail plane, adding more drag. Uncertainties emerge from difficulties in predicting the massive separation that occurs on the swept tail when it is approached by a flow at high incidence. Furthermore, the deployment of the control surface (the rudder) over the tail plane and the skewed flow along the span increase the CFD challenges. Improved predictive capabilities of the flow around VTPs would enable a more optimal design approach with potential drag saving. The correct prediction of flow separation is the essence of this study. Currently, the industry uses steady Reynolds-Averaged Navier-Stokes (RANS) simulations to analyse VTPs flow. In order to assess RANS performance, the study of airflow detaching from a backward rounded ramp is performed and the results are compared to Large-Eddy Simulations (LES). The analysis shows that, even though RANS may predict the onset of flow separation correctly, they completely miss the location of flow reattachment over the ramp, and this affects the whole flow solution. Moreover, the flow features a strong anisotropy at the onset of separation, difficult to be captured by RANS. The analysis shows that RANS cannot predict production of turbulent kinetic energy in the detached flow region correctly, discouraging flow mixing, and delaying flow reattachment. A hybrid RANS/LES carried out on the same test case shows the benefits of using eddy-resolving simulations for detached flows. The prediction of the locations of the separation and reattachment points differs by only 1% from the highly-resolved simulation. The VTP investigation carried out in this thesis uses a wind tunnel model tested at Airbus. The study starts with steady RANS approaches for different turbulence models. RANS simulations produce acceptable results for the flow at low incidence levels. On the contrary, at high incidence, when flow separation occurs, RANS methods fail. The second step of the research consists of using unsteady RANS (URANS) simulations for VTP flows at high sideslip angles. The introduction of time-accuracy brings important benefits. Nevertheless, the results still show some inaccuracies (around 20% error). Finally, restarting from the flow solutions obtained by URANS simulations, higher fidelity hybrid RANS/LES techniques in the form of Delayed Detached-Eddy Simulations (DDES) are used to assess the characteristics of the separated flow around the tail plane. Results show a remarkable improvement of the flow solution. The pressure distribution matches experimental results favourably, and this translates into an improved prediction of the aerodynamic loads over the VTP. This leads towards a new strategy for the assessment of the flow over aircraft VTPs, amounting to an important contribution to the design of future aircraft.
|
112 |
Greehouse Gas Simulations in Munich : Investigation of Wind Averaging Techniques for analysis of column measurements (XCO2) using CFDPawa, Diptesh January 2018 (has links)
The underlying objective of this thesis was to perform GHG simulation studies to predict the dispersion and transport of greenhouse gases emitted from a thermal power plant in order to assess the extent of dangerous living environment for those surrounding it in case of an unforeseen calamity. The research carried out during this thesis was to investigate the method of wind averaging techniques to analyse column measurements (XCO2). The reason for adopting this method of analysis was to correlate the physical aspect of wind data to average over a certain period of time wherein the amount of XCO2 (in ppm) observed displays values greater than the background concentration. CFD simulations were performed using the open source code, OpenFOAM, and steady RANS models modified with turbulence boundary conditions for the urban environment case with previously validated simulation studies carried out for the same region in Munich, Germany. Initial results performed during the testing stage indicated that maximum average XCO2 value (in ppm) was recorded at the lowest value of mean wind speed and at a more downwind location of the measurement site. The results obtained from simulation studies on comparison with experimental values (arithmetic average) also suggest that for the same time interval, the difference in values for similar wind conditions as mentioned before makes this technique a more favourable choice for comparison and verification at another time instant. There have been recent developments in GHG simulation based studies and however the current method does represent certain drawbacks, an insight into performing averaging analysis at time intervals representing peak XCO2 moments could be demonstrated which can also help in reducing the overall number of simulations as well as provide information with respect to mitigation measures based on transport and diffusion behavior.
|
113 |
Análise numérica de escoamentos turbulentos não reativos com transferência de calor por convecção e radiação térmica em meios participantes / Numerical analysis of non-reactive turbulent flows with convection and thermal radiation heat transfer in participanting mediaSantos, Elizaldo Domingues dos January 2011 (has links)
O presente trabalho apresenta um estudo numérico sobre escoamentos turbulentos combinando os mecanismos de transferência de calor por convecção e radiação térmica em meios participantes. Os principais propósitos são obter um melhor entendimento a respeito da relevância das interações Turbulência-Radiação (TRI) em escoamentos turbulentos não reativos, bem como, investigar o efeito da radiação térmica sobre o comportamento transiente, médio e estatístico dos campos térmicos. Para investigar a relevância das interações TRI em escoamentos turbulentos internos, realiza-se uma comparação entre os fluxos temporais médios por convecção e radiação térmica obtidos através da simulação de grandes escalas (LES) e da modelagem clássica da turbulência (RANS) para escoamentos no regime permanente com as seguintes espessuras ópticas: τ0 = 0.01, 0.10, 1.0, 10.0 e 100.0, que representam desde meios opticamente muito finos até meios muito espessos. Para todos os casos, o número de Reynolds baseado na velocidade de fricção e o número de Prandtl são mantidos fixos: Reτ = 180 e Pr = 0.71. A abordagem da turbulência é realizada a partir dos modelos submalha dinâmico de Smagorinsky (DSSGS) e k – ε padrão no âmbito de LES e RANS, enquanto nenhum modelo de turbulência é utilizado para a equação da transferência radiante (RTE). Com o intuito de contornar as dificuldades relacionadas com a dependência espectral da radiação térmica, todos os meios participantes são tratados como gás cinza. Para a solução numérica das equações de conservação de massa, quantidade de movimento e energia emprega-se um código comercial (FLUENT®) baseado no método de volumes finitos (FVM). A equação da transferência radiante é resolvida pelo método de ordenadas discretas (DOM). A relevância das interações TRI também é investigada em um escoamento não reativo em cavidade cilíndrica com ReD = 22000, Pr = 0.71 e τ0 = 0.10. Além destes casos, é simulado um escoamento transiente em cavidade retangular com ReH = 10000, Pr = 0.71 e τ0 = 10 para avaliar o efeito da radiação térmica sobre o campo térmico transiente. Os resultados mostram que as interações TRI podem ser desprezadas para escoamentos não reativos para meios com espessura óptica menor ou igual a τ0 = 1.0, concordando com resultados da literatura. No entanto, para meios mais espessos as interações TRI passam a ser relevantes, ao contrário do que tem sido afirmado na literatura. / The present work presents a numerical study about turbulent flows with combined convection and thermal radiation heat transfer in participating media. The main purposes of this study are to obtain a better understanding of the relevance of Turbulence-Radiation Interactions (TRI) for non-reactive turbulent flows, as well as, the investigation of the effect of thermal radiation over the time-averaged and statistics of the thermal field for these flows. To investigate the relevance of TRI for turbulent internal flows, it is performed a comparison between the timeaveraged convective and radiative surface fluxes obtained by means of Large Eddy Simulation (LES) and Reynolds-Averaged Navier Stokes (RANS) for steady state flows for the following optical thickness: τ0 = 0.01, 0.10, 1.0, 10.0 and 100.0, which represents from very thin to optical very thick media. For all cases, the Reynolds number based on the velocity friction and the Prandtl number are kept fixed: Reτ = 180 and Pr = 0.71. The turbulence is tackled with the dynamic Smagorinsky subgrid-scale (DSSGS) and the standard k – ε models within the LES and RANS framework, respectively, whilst no turbulence model is used for the radiative transfer equation (RTE). For the minimization of the difficulties concerned with the spectral dependence of thermal radiation, the participating media are treated as grey gas. For the numerical solution of the conservation equations of mass, momentum and energy it is employed a commercial CFD package (FLUENT®) based on the finite volume method (FVM). The radiative transfer equation (RTE) is solved by means of the discrete ordinates method (DOM). The TRI relevance is also investigated for the simulation of a non-reactive flow in a cylindrical cavity for the following dimensionless parameters: ReD = 22000, Pr = 0.71 and τ0 = 0.10. Besides the above mentioned cases, it is simulated a transient turbulent rectangular cavity flow at ReH = 10000, Pr = 0.71 and τ0 = 10 in order to evaluate the effect of thermal radiation over the transient thermal field. The results show that TRI can be neglected for non-reactive channel flows with optical thickness lower or equal than τ0 = 1.0, which is agreement with the previous findings of literature. However, as the optical thickness increases, the TRI becomes relevant, which is in disagreement with previous statements from literature.
|
114 |
Estudo numérico do controle passivo de camada limite via geradores de vórtices em perfil aerodinâmico de um veículo de competiçãoSoliman, Paulo Augusto January 2018 (has links)
O presente trabalho apresenta um estudo numérico dos efeitos da aplicação de geometrias geradoras de vórtices, com intuito de controlar passivamente a camada limite, em um perfil aerodinâmico que integra a asa traseira de multi elementos de um veículo de Fórmula SAE. As equações de Navier-Stokes com médias de Reynolds foram resolvidas utilizando o modelo k-ω SST (Shear Stress Transport) para o problema de fechamento da turbulência. Uma metodologia numérica padrão foi definida e utilizada nos diferentes casos analisados. Domínio de cálculo, malha, condições de contorno e critério de convergência foram escolhidos com base em norma SAE para análise numérica de escoamento externo em veículos terrestres. As camadas de volumes prismáticos próximos as superfícies com não-deslizamento foram dimensionadas de forma a resultar em um tratamento de parede adequado ao modelo de turbulência aplicado. O método GCI (Grid Convergence Index) foi utilizado para avaliar a qualidade da malha. Com o intuito de reduzir o custo computacional nos testes com diferentes configurações de geradores de vórtices, apenas parte de interesse do domínio de cálculo foi resolvido, impondo perfis de velocidade, energia cinética da turbulência e dissipação específica em sua entrada. Estas condições foram importadas da simulação com domínio completo resolvida Para verificar a correta captação dos principais efeitos físicos envolvidos, comparações com resultados experimentais foram feitas para 2 casos com escoamentos representativos: o corpo de Ahmed e um perfil aerodinâmico com geradores de vórtices. Além disso, as diferenças entre resolver o domínio completo ou parcial foram estudadas em outro comparativo com resultados experimentais. Concluiu-se que a metodologia numérica foi capaz de obter os coeficientes aerodinâmicos, e suas tendências frente a mudanças de geometria, nos casos estudados. Resolver parcialmente o domínio, impondo perfis em sua entrada, acarretou em diferença nos coeficientes obtidos na ordem de 2% para o coeficiente de sustentação e 7% para o coeficiente de arrasto. O controle passivo via geradores de vórtices foi eficaz em atrasar a separação da camada limite no flap do veículo de Fórmula SAE, as melhoras nos coeficientes de arrasto e sustentação foram da ordem de 7% e 0,3%, respectivamente. / The present work is a numerical study of the effects of the application of vortex generating geometries, in order to passively control the boundary layer, in an aerodynamic profile that integrates a multi-element rear wing of a Formula SAE vehicle. The Reynolds Averaged Navier-Stokes equations were solved using the k-ω Shear Stress Transport model for the turbulence closure problem. A standard numerical methodology was defined and used in the different cases analyzed. Computational domain, mesh, boundary conditions and convergence criteria were chosen based on SAE standard for numerical analysis of external flow in land vehicles. The layers of prismatic volumes near the non-slip surfaces were dimensioned to result in a wall treatment suitable to the applied turbulence model. The Grid Convergence Index (GCI) method was applied to evaluate the mesh quality. In order to reduce the computational cost in tests with different vortex generators configurations, only the part of interest of the calculation domain was solved, imposing velocity, turbulent kinetic energy and specific dissipation profiles on its inlet These conditions were imported from the full domain simulation already solved. To verify the correct capture of the main physical effects involved, comparisons with experimental results were made for 2 cases with representative flows: the Ahmed body and an aerodynamic profile with vortex generators. In addition, the differences between solving the complete or partial domain were studied in another comparative with experimental results. It was concluded that the numerical methodology was able to obtain the aerodynamic coefficients, and their tendencies against changes of geometry, in the cases studied. Partially solving the domain, imposing profiles at its entrance, resulted in a difference in the coefficients obtained in the order of 2% for the lift coefficient and 7% for the drag coefficient. The passive control via vortex generators was effective in delaying the separation of the boundary layer on the flap of the Formula SAE vehicle, the improvements in drag and lift coefficients were of the order of 7% and 0,3%, respectively.
|
115 |
Autonomic Closure in Reynolds-Averaged Navier-Stokes (RANS) Simulations of Turbulent FlowsJanuary 2017 (has links)
abstract: Reynolds-averaged Navier-Stokes (RANS) simulation is the industry standard for computing practical turbulent flows -- since large eddy simulation (LES) and direct numerical simulation (DNS) require comparatively massive computational power to simulate even relatively simple flows. RANS, like LES, requires that a user specify a “closure model” for the underlying turbulence physics. However, despite more than 60 years of research into turbulence modeling, current models remain largely unable to accurately predict key aspects of the complex turbulent flows frequently encountered in practical engineering applications. Recently a new approach, termed “autonomic closure”, has been developed for LES that avoids the need to specify any prescribed turbulence model. Autonomic closure is a fully-adaptive, self-optimizing approach to the closure problem, in which the simulation itself determines the optimal local, instantaneous relation between any unclosed term and the simulation variables via solution of a nonlinear, nonparametric system identification problem. In principle, it should be possible to extend autonomic closure from LES to RANS simulations, and this thesis is the initial exploration of such an extension. A RANS implementation of autonomic closure would have far-reaching impacts on the ability to simulate practical engineering applications that involve turbulent flows. This thesis has developed the formal connection between autonomic closure for LES and its counterpart for RANS simulations, and provides a priori results from FLUENT simulations of the turbulent flow over a backward-facing step to evaluate the performance of an initial implementation of autonomic closure for RANS. Key aspects of these results lay the groundwork on which future efforts to extend autonomic closure to RANS simulations can be based. / Dissertation/Thesis / Masters Thesis Aerospace Engineering 2017
|
116 |
Estudo numérico do controle passivo de camada limite via geradores de vórtices em perfil aerodinâmico de um veículo de competiçãoSoliman, Paulo Augusto January 2018 (has links)
O presente trabalho apresenta um estudo numérico dos efeitos da aplicação de geometrias geradoras de vórtices, com intuito de controlar passivamente a camada limite, em um perfil aerodinâmico que integra a asa traseira de multi elementos de um veículo de Fórmula SAE. As equações de Navier-Stokes com médias de Reynolds foram resolvidas utilizando o modelo k-ω SST (Shear Stress Transport) para o problema de fechamento da turbulência. Uma metodologia numérica padrão foi definida e utilizada nos diferentes casos analisados. Domínio de cálculo, malha, condições de contorno e critério de convergência foram escolhidos com base em norma SAE para análise numérica de escoamento externo em veículos terrestres. As camadas de volumes prismáticos próximos as superfícies com não-deslizamento foram dimensionadas de forma a resultar em um tratamento de parede adequado ao modelo de turbulência aplicado. O método GCI (Grid Convergence Index) foi utilizado para avaliar a qualidade da malha. Com o intuito de reduzir o custo computacional nos testes com diferentes configurações de geradores de vórtices, apenas parte de interesse do domínio de cálculo foi resolvido, impondo perfis de velocidade, energia cinética da turbulência e dissipação específica em sua entrada. Estas condições foram importadas da simulação com domínio completo resolvida Para verificar a correta captação dos principais efeitos físicos envolvidos, comparações com resultados experimentais foram feitas para 2 casos com escoamentos representativos: o corpo de Ahmed e um perfil aerodinâmico com geradores de vórtices. Além disso, as diferenças entre resolver o domínio completo ou parcial foram estudadas em outro comparativo com resultados experimentais. Concluiu-se que a metodologia numérica foi capaz de obter os coeficientes aerodinâmicos, e suas tendências frente a mudanças de geometria, nos casos estudados. Resolver parcialmente o domínio, impondo perfis em sua entrada, acarretou em diferença nos coeficientes obtidos na ordem de 2% para o coeficiente de sustentação e 7% para o coeficiente de arrasto. O controle passivo via geradores de vórtices foi eficaz em atrasar a separação da camada limite no flap do veículo de Fórmula SAE, as melhoras nos coeficientes de arrasto e sustentação foram da ordem de 7% e 0,3%, respectivamente. / The present work is a numerical study of the effects of the application of vortex generating geometries, in order to passively control the boundary layer, in an aerodynamic profile that integrates a multi-element rear wing of a Formula SAE vehicle. The Reynolds Averaged Navier-Stokes equations were solved using the k-ω Shear Stress Transport model for the turbulence closure problem. A standard numerical methodology was defined and used in the different cases analyzed. Computational domain, mesh, boundary conditions and convergence criteria were chosen based on SAE standard for numerical analysis of external flow in land vehicles. The layers of prismatic volumes near the non-slip surfaces were dimensioned to result in a wall treatment suitable to the applied turbulence model. The Grid Convergence Index (GCI) method was applied to evaluate the mesh quality. In order to reduce the computational cost in tests with different vortex generators configurations, only the part of interest of the calculation domain was solved, imposing velocity, turbulent kinetic energy and specific dissipation profiles on its inlet These conditions were imported from the full domain simulation already solved. To verify the correct capture of the main physical effects involved, comparisons with experimental results were made for 2 cases with representative flows: the Ahmed body and an aerodynamic profile with vortex generators. In addition, the differences between solving the complete or partial domain were studied in another comparative with experimental results. It was concluded that the numerical methodology was able to obtain the aerodynamic coefficients, and their tendencies against changes of geometry, in the cases studied. Partially solving the domain, imposing profiles at its entrance, resulted in a difference in the coefficients obtained in the order of 2% for the lift coefficient and 7% for the drag coefficient. The passive control via vortex generators was effective in delaying the separation of the boundary layer on the flap of the Formula SAE vehicle, the improvements in drag and lift coefficients were of the order of 7% and 0,3%, respectively.
|
117 |
Análise numérica de escoamentos turbulentos não reativos com transferência de calor por convecção e radiação térmica em meios participantes / Numerical analysis of non-reactive turbulent flows with convection and thermal radiation heat transfer in participanting mediaSantos, Elizaldo Domingues dos January 2011 (has links)
O presente trabalho apresenta um estudo numérico sobre escoamentos turbulentos combinando os mecanismos de transferência de calor por convecção e radiação térmica em meios participantes. Os principais propósitos são obter um melhor entendimento a respeito da relevância das interações Turbulência-Radiação (TRI) em escoamentos turbulentos não reativos, bem como, investigar o efeito da radiação térmica sobre o comportamento transiente, médio e estatístico dos campos térmicos. Para investigar a relevância das interações TRI em escoamentos turbulentos internos, realiza-se uma comparação entre os fluxos temporais médios por convecção e radiação térmica obtidos através da simulação de grandes escalas (LES) e da modelagem clássica da turbulência (RANS) para escoamentos no regime permanente com as seguintes espessuras ópticas: τ0 = 0.01, 0.10, 1.0, 10.0 e 100.0, que representam desde meios opticamente muito finos até meios muito espessos. Para todos os casos, o número de Reynolds baseado na velocidade de fricção e o número de Prandtl são mantidos fixos: Reτ = 180 e Pr = 0.71. A abordagem da turbulência é realizada a partir dos modelos submalha dinâmico de Smagorinsky (DSSGS) e k – ε padrão no âmbito de LES e RANS, enquanto nenhum modelo de turbulência é utilizado para a equação da transferência radiante (RTE). Com o intuito de contornar as dificuldades relacionadas com a dependência espectral da radiação térmica, todos os meios participantes são tratados como gás cinza. Para a solução numérica das equações de conservação de massa, quantidade de movimento e energia emprega-se um código comercial (FLUENT®) baseado no método de volumes finitos (FVM). A equação da transferência radiante é resolvida pelo método de ordenadas discretas (DOM). A relevância das interações TRI também é investigada em um escoamento não reativo em cavidade cilíndrica com ReD = 22000, Pr = 0.71 e τ0 = 0.10. Além destes casos, é simulado um escoamento transiente em cavidade retangular com ReH = 10000, Pr = 0.71 e τ0 = 10 para avaliar o efeito da radiação térmica sobre o campo térmico transiente. Os resultados mostram que as interações TRI podem ser desprezadas para escoamentos não reativos para meios com espessura óptica menor ou igual a τ0 = 1.0, concordando com resultados da literatura. No entanto, para meios mais espessos as interações TRI passam a ser relevantes, ao contrário do que tem sido afirmado na literatura. / The present work presents a numerical study about turbulent flows with combined convection and thermal radiation heat transfer in participating media. The main purposes of this study are to obtain a better understanding of the relevance of Turbulence-Radiation Interactions (TRI) for non-reactive turbulent flows, as well as, the investigation of the effect of thermal radiation over the time-averaged and statistics of the thermal field for these flows. To investigate the relevance of TRI for turbulent internal flows, it is performed a comparison between the timeaveraged convective and radiative surface fluxes obtained by means of Large Eddy Simulation (LES) and Reynolds-Averaged Navier Stokes (RANS) for steady state flows for the following optical thickness: τ0 = 0.01, 0.10, 1.0, 10.0 and 100.0, which represents from very thin to optical very thick media. For all cases, the Reynolds number based on the velocity friction and the Prandtl number are kept fixed: Reτ = 180 and Pr = 0.71. The turbulence is tackled with the dynamic Smagorinsky subgrid-scale (DSSGS) and the standard k – ε models within the LES and RANS framework, respectively, whilst no turbulence model is used for the radiative transfer equation (RTE). For the minimization of the difficulties concerned with the spectral dependence of thermal radiation, the participating media are treated as grey gas. For the numerical solution of the conservation equations of mass, momentum and energy it is employed a commercial CFD package (FLUENT®) based on the finite volume method (FVM). The radiative transfer equation (RTE) is solved by means of the discrete ordinates method (DOM). The TRI relevance is also investigated for the simulation of a non-reactive flow in a cylindrical cavity for the following dimensionless parameters: ReD = 22000, Pr = 0.71 and τ0 = 0.10. Besides the above mentioned cases, it is simulated a transient turbulent rectangular cavity flow at ReH = 10000, Pr = 0.71 and τ0 = 10 in order to evaluate the effect of thermal radiation over the transient thermal field. The results show that TRI can be neglected for non-reactive channel flows with optical thickness lower or equal than τ0 = 1.0, which is agreement with the previous findings of literature. However, as the optical thickness increases, the TRI becomes relevant, which is in disagreement with previous statements from literature.
|
118 |
Combined CFD and thermodynamic analysis of a supersonic ejector with liquid droplets / Analyse dynamique (CFD) et thermodynamique combinée dans un éjecteur supersonique en présence de gouttelettesCroquer Perez, Sergio January 2018 (has links)
Abstract : This research project has as main objective to study in detail the internal flow features of single-phase supersonic ejectors for refrigeration applications, and the potential effects of injecting droplets on the performance of the device. To this end, a numerical approach is proposed which has been separated into two parts:
First, a RANS modelling strategy for supersonic ejectors has been outlined combining the NIST real gas equations database [NIST, 2010] and the k − ω SST turbulence model in its low-Reynolds number formulation. The proposed approach agrees within 5% (resp. 2%) to the experimental entrainment ratio (resp. compression ratio) data of García del Valle et al. [2014], properly captures the main internal flow features and has a reasonable computational cost. This RANS model has been applied in the analysis of a supersonic R134a ejector for refrigeration purposes, showing in particular that the secondary flow is entrained by momentum transfer through the mixing shear layer, that the distance between the primary nozzle exit and the shock-waves in the constant area section varies between 9 and 16 times the primary nozzle exit diameter and that the important axial character of the flow limits mixing of both inlet flows until after the shock train. Furthermore, an exergy analysis through the device shows that the mixing and the oblique shock waves are responsible for between 50% and 70% of the generated losses, the latter might be attenuated through droplet injection in the constant area section. Moreover, it has been shown that drop-in replacement of the working fluid with HFOs R1234yf and R1234ze(E) leads to mild changes in the ejector performance but reduces the HDRC system COP (resp. cooling capacity) in average by 7.1% (resp. 23.3%). Lastly, a comparison of the model predictions with the thermodynamic model of Galanis and Sorin [2016] for an air ejector, shows that as the working fluid approaches the ideal gas behaviour, the flow can be adimensionalized in terms of the secondary inlet temperature and pressure, the motive nozzle throat and the entrainment and compression ratios.
In the second part, the influence of droplets has been studied from a local perspective by extending the RANS model to include a discrete phase, which affects the main flow through exchanges of momentum and thermal energy, and from a global perspective by building a thermodynamic model, which predicts the entrainment and limiting compression ratio given a fixed geometry and operating conditions. Both approaches present very good agreement in terms of p, T and M a internal profiles. Results for a supersonic ejector with R134a as baseline working fluid and droplets injected at the constant area section show that the flow structure has perceptible changes only at the highest injection fraction considered 10%, which induces boundary layer detachment, reduces the shock intensity by 8% and diminishes the superheat at the ejector outlet by 15 ◦C. Nonetheless, ejector performance metrics are severely affected as the limiting compression ratio, Elbel efficiency and exergy performance reduce respectively by 5%, 11% and 15%, due mainly to the additional entropy generated through droplet injection and mixing with the main flow. / Ce projet de recherche a pour objectif principal d’étudier en détail les caractéristiques de l’écoulement interne dans des éjecteurs supersoniques monophasiques pour des applications en réfrigération, et les effets potentiels de l’injection de gouttelettes sur les performances de l’appareil. A cette fin, une approche numérique est proposée et a été séparée en deux parties.
Tout d’abord, une stratégie de modélisation RANS pour les éjecteurs supersoniques a été décrite en combinant la base de données pour les gaz réels NIST [NIST, 2010] et le modèle de turbulence k − ω SST dans sa formulation à bas nombre de Reynolds. L’approche proposée prédit avec un accord d’environ 5% (resp. 2%) le rapport d’entraînement (resp. rapport de compression) avec les données expérimentales de García del Valle et al. [2014]. Il capte également correctement les principales caractéristiques de l’écoulement interne et a un coût de calcul raisonnable. Ce modèle RANS a été appliqué à l’analyse d’un éjecteur supersonique au R134a utilisé à des fins de réfrigération, montrant en particulier que le flux secondaire est entraîné par un transfert d’impulsion à travers la couche de cisaillement, que la position de départ des ondes de choc dans la section constante se situe dans une plage de 9 à 16 fois le diamètre de sortie de la buse primaire et que l’important caractère axial du flux limite le mélange des deux écoulements d’entrée au-delà du train d’ondes de choc. De plus, une analyse exergétique à travers le dispositif montre que le mélange et les ondes de choc obliques sont responsables de 50% et 70% des pertes générées, ces dernières pouvant être atténuées par injection de gouttelettes dans la section à zone constante. De plus, il a été démontré que le remplacement direct du fluide de travail par les HFO R1234yf et R1234ze(E) entraîne de légers changements dans la performance de l’éjecteur mais réduit en moyenne le COP du système HDRC (resp. la capacité de refroidissement) de 7.1% (resp. 23.3%). Enfin, une comparaison des prédictions du modèle avec le modèle thermodynamique de Galanis and Sorin [2016] pour un éjecteur à air montre que lorsque le fluide de travail se rapproche du comportement de gaz idéal, l’écoulement peut être normalisé en fonction de la température et de la pression à l’entrée secondaire, la gorge de la tuyère principale et les rapports d’entraînement et de compression.
Dans la seconde partie, l’influence des gouttelettes a été étudiée d’un point de vue local en étendant le modèle RANS à une phase discrète qui affecte le flux principal par des échanges de quantité de mouvement et d’énergie thermique, et d’un point de vue global en construisant un modèle thermodynamique qui prédit l’entraînement et le rapport de compression limitant étant donné une géométrie fixe et les conditions de fonctionnement. Les deux approches présentent un très bon accord en termes de profils internes de p, T et Ma. Les résultats pour un éjecteur supersonique au R134a comme fluide de base, avec des gouttelettes injectées à mi-chemin dans la section de la zone constante, montrent que la structure d’écoulement dans cette région présente des changements perceptibles seulement à la fraction d’injection la plus élevée, 10%, en diminuant l’intensité du choc de 8% et la surchauffe à la sortie de l’éjecteur de 15 ◦C. Néanmoins, la performance de l’éjecteur est sévèrement affectée vu que le rapport de compression, l’efficacité d’Elbel et le performance exergétique sont réduites respectivement de 5%, 11% et 15%, principalement en raison de l’entropie supplémentaire générée par l’injection de gouttelettes et le mélange avec le flux principal.
|
119 |
Simulação da interação casco-propulsor de uma embarcação usando mecânica dos fluidos computacional (CFD). / Simulation of the propeller-hull interaction using computational fluid mechanics (CFD).Carlos José Rocha de Oliveira Castro 13 February 2007 (has links)
Este trabalho discute a questão da interação entre o casco do navio e o propulsor em funcionamento conjunto, e sua simulação por ferramentas computacionais. O texto se concentra em descrever os principais efeitos dessa interação, as principais dificuldades em se estimar esses efeitos, os métodos tradicionalmente usados, e como ferramentas computacionais podem ser aplicadas de maneira vantajosa. No texto também pode ser encontrada uma análise crítica dos métodos mais comuns e dos resultados, baseada em trabalhos de diversos autores, publicados nacional e internacionalmente. É apresentado o método dos volumes finitos, usado nesta pesquisa, algumas de suas particularidades principais, vantagens e desvantagens, e os resultados das simulações realizadas, interpretados à luz dos valores experimentais usados para comparação e das limitações do método dos Volumes Finitos. A comparação é feita analisando-se grandezas integrais, como a resistência do casco ou o empuxo do propulsor; e também as características do escoamento, como o perfil de velocidade na esteira, presença de vórtices, e outras estruturas típicas. Os resultados obtidos têm a mesma ordem de precisão dos que tem sido obtidos por outros pesquisadores, internacionalmente, e são coerentes qualitativamente; mas algumas questões referentes aos modelos físico e numérico escolhidos ainda limitam a precisão dos resultados e restringem sua adoção em atividades de engenharia. Entretanto, diversas características observadas no escoamento contribuem para aumentar o conhecimento de alguns fenômenos envolvidos no problema. / This work is about the hull and propeller interaction in joint functioning, and its simulation by computational tools. The text concentrates in describing the main effects of such interaction, the main difficulties in the estimation of these effects, the methods traditionally adopted, and how computational tools can be applied in advantageous way. A critical analysis of the most common methods and results, based on paperworks of several different authors worldwide, can also be found. The Finite Volumes method, used in this research, is presented - its main issues, advantages and disadvantages, and the simulations outcomes, compared to the experimental values and explained by the knowledge of the Finite Volumes method limitations. The comparison is made by means of both integral values, such as the hull\'s resistance or the propeller thrust; as well as the characteristics of the flow, like the wake velocity profile, presence of vortex, and other typical structures. The results shows the same error band than the ones which has been obtained by other researchers, worldwide, and most of the typical characteristics of the flow were observed. But some issues concerned to the chosen physical and numerical models still limit the precision of the outcomes, and restrict the application of such models at engineering activities. But several insights about the flow, obtained at this study, can be useful to the understanding of some phenomena involved in the propeller operation.
|
120 |
Análise numérica de escoamentos turbulentos não reativos com transferência de calor por convecção e radiação térmica em meios participantes / Numerical analysis of non-reactive turbulent flows with convection and thermal radiation heat transfer in participanting mediaSantos, Elizaldo Domingues dos January 2011 (has links)
O presente trabalho apresenta um estudo numérico sobre escoamentos turbulentos combinando os mecanismos de transferência de calor por convecção e radiação térmica em meios participantes. Os principais propósitos são obter um melhor entendimento a respeito da relevância das interações Turbulência-Radiação (TRI) em escoamentos turbulentos não reativos, bem como, investigar o efeito da radiação térmica sobre o comportamento transiente, médio e estatístico dos campos térmicos. Para investigar a relevância das interações TRI em escoamentos turbulentos internos, realiza-se uma comparação entre os fluxos temporais médios por convecção e radiação térmica obtidos através da simulação de grandes escalas (LES) e da modelagem clássica da turbulência (RANS) para escoamentos no regime permanente com as seguintes espessuras ópticas: τ0 = 0.01, 0.10, 1.0, 10.0 e 100.0, que representam desde meios opticamente muito finos até meios muito espessos. Para todos os casos, o número de Reynolds baseado na velocidade de fricção e o número de Prandtl são mantidos fixos: Reτ = 180 e Pr = 0.71. A abordagem da turbulência é realizada a partir dos modelos submalha dinâmico de Smagorinsky (DSSGS) e k – ε padrão no âmbito de LES e RANS, enquanto nenhum modelo de turbulência é utilizado para a equação da transferência radiante (RTE). Com o intuito de contornar as dificuldades relacionadas com a dependência espectral da radiação térmica, todos os meios participantes são tratados como gás cinza. Para a solução numérica das equações de conservação de massa, quantidade de movimento e energia emprega-se um código comercial (FLUENT®) baseado no método de volumes finitos (FVM). A equação da transferência radiante é resolvida pelo método de ordenadas discretas (DOM). A relevância das interações TRI também é investigada em um escoamento não reativo em cavidade cilíndrica com ReD = 22000, Pr = 0.71 e τ0 = 0.10. Além destes casos, é simulado um escoamento transiente em cavidade retangular com ReH = 10000, Pr = 0.71 e τ0 = 10 para avaliar o efeito da radiação térmica sobre o campo térmico transiente. Os resultados mostram que as interações TRI podem ser desprezadas para escoamentos não reativos para meios com espessura óptica menor ou igual a τ0 = 1.0, concordando com resultados da literatura. No entanto, para meios mais espessos as interações TRI passam a ser relevantes, ao contrário do que tem sido afirmado na literatura. / The present work presents a numerical study about turbulent flows with combined convection and thermal radiation heat transfer in participating media. The main purposes of this study are to obtain a better understanding of the relevance of Turbulence-Radiation Interactions (TRI) for non-reactive turbulent flows, as well as, the investigation of the effect of thermal radiation over the time-averaged and statistics of the thermal field for these flows. To investigate the relevance of TRI for turbulent internal flows, it is performed a comparison between the timeaveraged convective and radiative surface fluxes obtained by means of Large Eddy Simulation (LES) and Reynolds-Averaged Navier Stokes (RANS) for steady state flows for the following optical thickness: τ0 = 0.01, 0.10, 1.0, 10.0 and 100.0, which represents from very thin to optical very thick media. For all cases, the Reynolds number based on the velocity friction and the Prandtl number are kept fixed: Reτ = 180 and Pr = 0.71. The turbulence is tackled with the dynamic Smagorinsky subgrid-scale (DSSGS) and the standard k – ε models within the LES and RANS framework, respectively, whilst no turbulence model is used for the radiative transfer equation (RTE). For the minimization of the difficulties concerned with the spectral dependence of thermal radiation, the participating media are treated as grey gas. For the numerical solution of the conservation equations of mass, momentum and energy it is employed a commercial CFD package (FLUENT®) based on the finite volume method (FVM). The radiative transfer equation (RTE) is solved by means of the discrete ordinates method (DOM). The TRI relevance is also investigated for the simulation of a non-reactive flow in a cylindrical cavity for the following dimensionless parameters: ReD = 22000, Pr = 0.71 and τ0 = 0.10. Besides the above mentioned cases, it is simulated a transient turbulent rectangular cavity flow at ReH = 10000, Pr = 0.71 and τ0 = 10 in order to evaluate the effect of thermal radiation over the transient thermal field. The results show that TRI can be neglected for non-reactive channel flows with optical thickness lower or equal than τ0 = 1.0, which is agreement with the previous findings of literature. However, as the optical thickness increases, the TRI becomes relevant, which is in disagreement with previous statements from literature.
|
Page generated in 0.0525 seconds