• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 2
  • Tagged with
  • 21
  • 21
  • 13
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la réactivité de minéraux purs en présence de CO2 supercritique : mesure de la cinétique de carbonatation de la portlandite

Regnault, Olivier 01 April 2008 (has links) (PDF)
Le stockage géologique de CO2 est une des solutions techniques envisagées pour faire face aux émissions de gaz à effet de serre dans l'atmosphère. Déjà mis en oeuvre aujourd'hui dans quelques sites pilotes, son acceptabilité à grande échelle requiert la démonstration de la tenue à long terme des propriétés de confinement des couvertures sus-jacentes aux réservoirs, et des ouvrages en ciment, particulièrement sensibles, qui constituent notamment les scellements de fond de puits. Pendant la phase d'injection, une bulle de CO2 supercritique se forme, migre vers le sommet du réservoir sous l'effet de la poussée d'Archimède et se solubilise lentement (plusieurs dizaines d'années pour que la solubilisation soit complète). Alors que les réactions de dissolution et de carbonatation en présence d'eau liquide sont largement étudiées et commencent à être bien connues, la réactivité de la bulle de CO2 en phase supercritique ou vapeur est encore mal appréhendée. C'est face à ces incertitudes que nous avons mené une série d'expériences visant à décrire, à comprendre et à quantifier la réactivité d'un matériel minéral en présence d'une phase vapeur riche en CO2. Un minéral a été particulièrement étudié : la portlandite. Il s'agit d'un constituant clef des ciments riches en calcium, et à ce titre, peut, en première approche, être considéré comme un analogue des ciments de scellements de fond de puits. La cinétique de carbonatation de la portlandite a été déterminée à 80, 120 et 200°C, sous une pression de 160 bar et au contact de CO2 initialement anhydre, ou d'un mélange CO2-H2O. Un protocole original a été élaboré : il associe mesures de l'avancement de la réaction (principalement, analyses par DRX du taux de carbonatation de la fraction solide et enregistrement de la consommation de CO2 au cours de la réaction) et modélisation de l'évolution des équilibres de phases et des propriétés volumétriques du fluide réactionnel. D'un point de vue phénoménologique, nous avons montré que l'état de phase du système (vapeur ou biphasique liquide-vapeur) est déterminant. Il contrôle en grande partie le mode de réactivité et l'évolution cinétique de la réaction. Un modèle géochimique prenant en compte les spécificités de notre système réactionnel pauvre en eau a alors été développé pour simuler la carbonatation de la portlandite et à terme celle d'un ciment complet de type "fond de puits".
2

Prédiction des propriétés d'équilibre dans les milieux biologiques et alimentaires par le modèle COSMO-RS / Prediction of the equilibrium properties in food and biological systems with the COSMO-RS model

Toure, Oumar 10 January 2014 (has links)
Les milieux biologiques et alimentaires sont généralement des mélanges contenant un nombre élevé de constituants (eau, solvants organiques, solides dissous, gaz dissous, espèces ioniques, macromolécules). La prédiction des propriétés d’équilibre de tels milieux requiert l’utilisation d’un modèle thermodynamique entièrement prédictif. Ce modèle doit également permettre d’assurer la cohérence entre des données expérimentales et garantir la robustesse de la représentation simultanée des équilibres physiques (liquide-vapeur, solubilité, etc.) et chimiques (dissociation, oxydo-réduction, complexation, etc.). Le potentiel chimique est une donnée indispensable pour modéliser ces équilibres. Sa connaissance dépend de la prédiction de deux variables : l’enthalpie libre de formation dans un état de référence choisi, et le coefficient d’activité qui dépend aussi de l’état de référence choisi. Le modèle COSMO-RS est un excellent modèle de prédiction des coefficients d’activité très largement utilisé dans le domaine du génie chimique où on s’intéresse essentiellement à des molécules neutres. Ce travail de thèse a permis d’étendre les performances du modèle COSMO-RS au traitement des milieux biologiques et alimentaires dans lesquels on trouve systématiquement des électrolytes en solution (en plus des molécules neutres). Un nouvel outil utilisant les récentes avancées de la mécanique quantique a été développé pour prédire les propriétés de formation à l’état gaz. En combinant des concepts de la thermodynamique, de la mécanique quantique, de l’électrostatique, et de la physique statistique, il a été démontré qu’il est possible d’utiliser le modèle COSMO-RS pour faire la transition entre l’état gaz et la phase condensée. Partant de là, ce travail démontre qu’il est maintenant possible de traiter simultanément les équilibres physiques et chimiques et donc de prédire les propriétés physico-chimiques (aW, pH, Eh) dans les milieux biologiques et alimentaires par le modèle COSMO-RS. / Food and biological systems are generally multicomponent mixtures (including water, organic solvents, dissolved solids, dissolved gases, ionic species, macromolecules). The prediction of the equilibrium properties of such environments requires the use of a fully predictive thermodynamic model. This model must be able to ensure the consistency between experimental data and to ensure the robustness of the simultaneous representation of physical equilibria (liquid-vapour, solubility, etc.) and chemical equilibria (dissociation, redox, complexation, etc.). The chemical potential is an essential property for modelling such equilibria. Its determination depends on two variables: the Gibbs free energy of formation in a chosen reference state, and the prediction of the activity coefficient which also depends on the chosen reference state. The COSMO-RS model is an excellent model for predicting activity coefficients that is widely used in chemical engineering where the studied molecules are generally neutral. This PhD study enabled to extend the performance of the COSMO-RS model toward the treatment of food and biological systems where there are systematically electrolytes in solution (in addition to neutral molecules). A new tool based on the recent advances of quantum mechanics has been developed in order to predict gas phase formation properties. By combining concepts of thermodynamics, quantum physics, electrostatics and statistical physics, it has been demonstrated that it is possible to use the COSMO-RS model to ensure the transition between the gas phase and the condensed phase. In this context, this work demonstrates that it is possible to treat simultaneously physical and chemical equilibria and thus to predict physico-chemical properties (aW, pH, Eh) in food and biological systems using the COSMO-RS model.
3

Etude thermodynamique des systèmes gaz-zéolithe. Le modèle des grands éléments de structure.

Bernache-Assollant, Didier 13 July 1978 (has links) (PDF)
Les phénomènes d'adsorption interviennent de façon déterminante dans de nombreuses réactions hétérogènes comme les réactions de décomposition ou les réactions électrochimiques aux électrodes. Leur étude systématique aux plans expérimental et théorique est donc à ce titre amplement justifiée, par surcroît, certains solides ont, grâce à leurs propriétés spécifiques d'adsorption, des champs d'application divers (notamment en pétrochimie) : Ce sont en particulier les corps zéolithiques utilisés comme catalyseurs, supports de catalyseurs, ou tamis moléculaires. Il n'est donc pas étonnant que les résultats expérimentaux soient nombreux en ce domaine, cependant l'étude de leur comportement en présence de mélanges gazeux pose des difficultés expérimentales réelles ce qui a nettement limité le nombre des résultats obtenus à ce jour, les recherches théoriques ont souvent donné lieu à l'extension de modèles déjà appliqués avec succès à d'autres solides mais rarement l'aspect spécifique de la structure zéolithique (cavités régulières) a été prise en compte. Le but de ce travail est donc double : D'une part, l'élaboration d'un modèle thermodynamique adapté au cas particulier de l'adsorption de gaz purs ou de leur mélange sur une zéolithe, d'autre part, la mise au point d'une méthode expérimentale permettant l'étude des équilibres d'adsorption d'un mélange gazeux sur un solide. La première partie de ce mémoire comprendra une brève mise à jour bibliographique en particulier la description des différentes théories interprétant les isothermes d'adsorption d'un gaz pur et de mélange gazeux sur un solide. La deuxième partie sera consacrée à la description d'une nouvelle méthode thermodynamique, générale par son formalisme, permettant l'étude quantitative de l'équilibre entre la phase adsorbée et la phase gazeuse. Les deux cas extrêmes, adsorption localisée ou délocalisée dans les cavités, seront étudiés ainsi que les lois correspondantes de répartitions des cavités en fonction de leur taux de remplissage. L'extension au cas d'un mélange gazeux sera effectuée à la fin de cette partie. Dans la troisième partie, nous décrirons l'appareillage utilisé et la mise au point expérimentale de l'étude de l'adsorption d'un mélange gazeux sur un solide. Les deux derniers chapitres de cette partie seront consacrés aux résultats expérimentaux et aux interprétations théoriques portant sur les systèmes : Dioxyde de carbone ou éthane sur les zéolithes 4 A et 13X ainsi que le mélange gazeux éthane-dioxyde de carbone sur la zéolithe 4 A.
4

Combined CFD and thermodynamic analysis of a supersonic ejector with liquid droplets / Analyse dynamique (CFD) et thermodynamique combinée dans un éjecteur supersonique en présence de gouttelettes

Croquer Perez, Sergio January 2018 (has links)
Abstract : This research project has as main objective to study in detail the internal flow features of single-phase supersonic ejectors for refrigeration applications, and the potential effects of injecting droplets on the performance of the device. To this end, a numerical approach is proposed which has been separated into two parts: First, a RANS modelling strategy for supersonic ejectors has been outlined combining the NIST real gas equations database [NIST, 2010] and the k − ω SST turbulence model in its low-Reynolds number formulation. The proposed approach agrees within 5% (resp. 2%) to the experimental entrainment ratio (resp. compression ratio) data of García del Valle et al. [2014], properly captures the main internal flow features and has a reasonable computational cost. This RANS model has been applied in the analysis of a supersonic R134a ejector for refrigeration purposes, showing in particular that the secondary flow is entrained by momentum transfer through the mixing shear layer, that the distance between the primary nozzle exit and the shock-waves in the constant area section varies between 9 and 16 times the primary nozzle exit diameter and that the important axial character of the flow limits mixing of both inlet flows until after the shock train. Furthermore, an exergy analysis through the device shows that the mixing and the oblique shock waves are responsible for between 50% and 70% of the generated losses, the latter might be attenuated through droplet injection in the constant area section. Moreover, it has been shown that drop-in replacement of the working fluid with HFOs R1234yf and R1234ze(E) leads to mild changes in the ejector performance but reduces the HDRC system COP (resp. cooling capacity) in average by 7.1% (resp. 23.3%). Lastly, a comparison of the model predictions with the thermodynamic model of Galanis and Sorin [2016] for an air ejector, shows that as the working fluid approaches the ideal gas behaviour, the flow can be adimensionalized in terms of the secondary inlet temperature and pressure, the motive nozzle throat and the entrainment and compression ratios. In the second part, the influence of droplets has been studied from a local perspective by extending the RANS model to include a discrete phase, which affects the main flow through exchanges of momentum and thermal energy, and from a global perspective by building a thermodynamic model, which predicts the entrainment and limiting compression ratio given a fixed geometry and operating conditions. Both approaches present very good agreement in terms of p, T and M a internal profiles. Results for a supersonic ejector with R134a as baseline working fluid and droplets injected at the constant area section show that the flow structure has perceptible changes only at the highest injection fraction considered 10%, which induces boundary layer detachment, reduces the shock intensity by 8% and diminishes the superheat at the ejector outlet by 15 ◦C. Nonetheless, ejector performance metrics are severely affected as the limiting compression ratio, Elbel efficiency and exergy performance reduce respectively by 5%, 11% and 15%, due mainly to the additional entropy generated through droplet injection and mixing with the main flow. / Ce projet de recherche a pour objectif principal d’étudier en détail les caractéristiques de l’écoulement interne dans des éjecteurs supersoniques monophasiques pour des applications en réfrigération, et les effets potentiels de l’injection de gouttelettes sur les performances de l’appareil. A cette fin, une approche numérique est proposée et a été séparée en deux parties. Tout d’abord, une stratégie de modélisation RANS pour les éjecteurs supersoniques a été décrite en combinant la base de données pour les gaz réels NIST [NIST, 2010] et le modèle de turbulence k − ω SST dans sa formulation à bas nombre de Reynolds. L’approche proposée prédit avec un accord d’environ 5% (resp. 2%) le rapport d’entraînement (resp. rapport de compression) avec les données expérimentales de García del Valle et al. [2014]. Il capte également correctement les principales caractéristiques de l’écoulement interne et a un coût de calcul raisonnable. Ce modèle RANS a été appliqué à l’analyse d’un éjecteur supersonique au R134a utilisé à des fins de réfrigération, montrant en particulier que le flux secondaire est entraîné par un transfert d’impulsion à travers la couche de cisaillement, que la position de départ des ondes de choc dans la section constante se situe dans une plage de 9 à 16 fois le diamètre de sortie de la buse primaire et que l’important caractère axial du flux limite le mélange des deux écoulements d’entrée au-delà du train d’ondes de choc. De plus, une analyse exergétique à travers le dispositif montre que le mélange et les ondes de choc obliques sont responsables de 50% et 70% des pertes générées, ces dernières pouvant être atténuées par injection de gouttelettes dans la section à zone constante. De plus, il a été démontré que le remplacement direct du fluide de travail par les HFO R1234yf et R1234ze(E) entraîne de légers changements dans la performance de l’éjecteur mais réduit en moyenne le COP du système HDRC (resp. la capacité de refroidissement) de 7.1% (resp. 23.3%). Enfin, une comparaison des prédictions du modèle avec le modèle thermodynamique de Galanis and Sorin [2016] pour un éjecteur à air montre que lorsque le fluide de travail se rapproche du comportement de gaz idéal, l’écoulement peut être normalisé en fonction de la température et de la pression à l’entrée secondaire, la gorge de la tuyère principale et les rapports d’entraînement et de compression. Dans la seconde partie, l’influence des gouttelettes a été étudiée d’un point de vue local en étendant le modèle RANS à une phase discrète qui affecte le flux principal par des échanges de quantité de mouvement et d’énergie thermique, et d’un point de vue global en construisant un modèle thermodynamique qui prédit l’entraînement et le rapport de compression limitant étant donné une géométrie fixe et les conditions de fonctionnement. Les deux approches présentent un très bon accord en termes de profils internes de p, T et Ma. Les résultats pour un éjecteur supersonique au R134a comme fluide de base, avec des gouttelettes injectées à mi-chemin dans la section de la zone constante, montrent que la structure d’écoulement dans cette région présente des changements perceptibles seulement à la fraction d’injection la plus élevée, 10%, en diminuant l’intensité du choc de 8% et la surchauffe à la sortie de l’éjecteur de 15 ◦C. Néanmoins, la performance de l’éjecteur est sévèrement affectée vu que le rapport de compression, l’efficacité d’Elbel et le performance exergétique sont réduites respectivement de 5%, 11% et 15%, principalement en raison de l’entropie supplémentaire générée par l’injection de gouttelettes et le mélange avec le flux principal.
5

Études thermodynamiques sur les Semi-Clathrate Hydrates de TBAB + gaz contenant du Dioxyde de Carbone

Eslamimanesh, Ali 14 August 2012 (has links) (PDF)
Capturer le CO2 est devenu un domaine de recherche important en raison principalement des forts effets de serre dont il est jugé responsable. La formation d'hydrate de gaz comme technique de séparation montre un potentiel considérable, d'une part pour sa faisabilité physique et d'autre part pour une consommation énergétique réduite. En bref, les hydrates de gaz (clathrates) sont des composés ″cages″ non-stoechiométriques, cristallins comme la glace et formés par une combinaison de molécules d'eau et de molécules hôtes convenables, à basses températures et pressions élevées. Puisque la pression exigée pour la formation d'hydrate de gaz est généralement forte, il est judicieux d'ajouter du bromure tétra-n-butylique d'ammonium (TBAB) comme promoteur de formation d'hydrate de gaz. En effet, le TBAB permet généralement de réduire la pression exigée et/ou d'augmenter la température de formation aussi que de modifier la sélectivité des cages d'hydrates au profit des molécules de CO2. TBAB participe à la formation des cages par liaisons ″hydrogène″. De tels hydrates sont nommés "semi-clathrate hydrates". Évidemment, des données d'équilibres de phase fiables et précises, des modèles thermodynamiques acceptables, et d'autres études thermodynamiques sont requises pour concevoir des procédés de séparation efficaces utilisant la technologie mentionnée ci-dessus. Dans ce but, des équilibres de phase de clathrate/semi-clathrate hydrates de de divers mélanges avec des gaz contenant CO2 (CO2 + CH4/N2/H2) ont été mesurés, ici, en présence d'eau pure et de solutions aqueuses de TBAB. La partie théorique de la thèse présente un modèle thermodynamique développé avec succès sur la base de la théorie des solutions solides de van der Waals et Platteeuw (vdW-P) associée aux équations modifiées de la détermination des constantes de Langmuir des promoteurs d'hydrates pour la représentation/prédiction des équilibres en présence de ″semi-clathrate hydrates″ de CO2, CH4, et N2. Plusieurs tests de cohérence thermodynamique basés soit sur l'équation de Gibbs-Duhem, soit sur une approche statistique ont été appliqués aux données d'équilibre de phase des systèmes de ″clathrate hydrates″ simples/mélanges afin de statuer sur leur qualité.
6

Etude de la capture du CO2 par absorption physique dans les systèmes de production d'électricité basés sur la gazéification du charbon intégrée à un cycle combiné

Descamps, Cathy 01 June 2004 (has links) (PDF)
La volonté de réduction des émissions de gaz à d'effet de serre est à l'origine de l'étude de la capture du CO2 dans les systèmes de production d'électricité à base de gazéification du charbon intégrée à un cycle combiné. Une étude comparative des procédés de capture de CO2 retenus dans la littérature (MEA-MDEA, AMP, N-Méthyl- Pyrrolidone et méthanol) a conduit au choix de l'absorption physique par le méthanol. La simulation du fonctionnement de l'IGCC avec capture de CO2 a été réalisée à l'aide du logiciel Aspen Plus
7

Développement d'une équation d'état applicable aux systèmes d'électrolytes eau-alcool-sels-hydrocarbures

Inchekel, Radia 30 January 2008 (has links) (PDF)
Les électrolytes changent considérablement les solubilités mutuelles des mélanges eau-hydrocarbures et la représentation des propriétés thermodynamiques devient alors plus délicate. Les modèles d'équilibre de phases qui sont capables de décrire de tels mélanges sont habituellement de type hétérogène. La thèse proposée ici utilise des méthodes issues de la thermodynamique statistique pour développer une équation d'état, permettant de tenir compte des différentes interactions existantes (non-électrolyte, électrolyte). Nous avons utilisé une équation de type CPA (Cubic Plus Association) que nous avons combinée avec des termes spécifiques aux ions: MSA (Mean Spherical Approximation), le terme de Born et le terme de solvatation de Planche et Renon (SR2). La première partie de ce travail a été réalisée pour tester la capacité du modèle (CPA-E) à représenter les propriétés thermodynamiques (densité, coefficient d'activité et coefficient osmotique) de solutions électrolytiques simples tels que des solutions aqueuses de NaCI et de CaClz. Il a été ensuite, étendu en température, ainsi qu'à d'autres sels. Après cela, nous avons étudié les mélanges ternaires (eau-hydrocarbure-sel, eau-hydrocarbure-méthanol, eau-méthanol-sel), l'objectif étant de pouvoir traiter un système complet: eau-hydrocarbure-méthanol-sels.
8

Absorption-désorption des gaz acides par des solutions aqueuses d'amines

Cadours, Renaud 23 September 1998 (has links) (PDF)
Une cellule à interface gaz-liquide fixe a été conçue pour la mesure de flux de désorption de dioxyde de carbone à partir de solutions aqueuses d'amines. Les expériences ont été réalisées pour des températures comprises entre 40°C et 110°C, pour des taux de charge en gaz acide compris entre 0,05 et 0,85 molCO2/molamines, à partir de solutions aqueuses de MDEA 25 % et 50 % massiques et de mélanges MDEA-DEA de composition 45-5 et 30-20 % massiques. L'utilisation d'une méthode analytique faisant intervenir des approximations thermodynamiques et cinétiques permet de représenter les flux de désorption expérimentaux obtenus avec les solutions aqueuses de MDEA pour des taux de charge inférieurs à 0,50 molCO2/molMDEA. Il est apparu nécessaire de coupler un modèle de transfert prenant en compte les réactions chimiques avec un modèle thermodynamique représentant les équilibres physiques et chimiques des systèmes CO2-H2O-Amines. Un outil numérique a alors été développé pour représenter les phénomènes de transfert en présence de réactions chimiques. Les profils de concentration de chaque espèce et le flux de transfert de l'espèce transférée à l'interface gaz-liquide sont obtenus à partir de la résolution des équations de bilan de masses. Ce modèle cinétique, combiné avec un jeu de paramètres adéquats, a été appliqué avec succès à la représentation de l'absorption de CO2 par des solutions aqueuses de MDEA et des mélanges aqueux de MDEA-DEA et MDEAMEA. En couplant des paramètres cinétiques et thermodynamiques cohérents, cet outil permet de représenter les flux de désorption mesurés dans la cellule à interface constante.
9

Modélisation et optimisation numérique de l'étape de chauffage infrarouge pour la fabrication de bouteilles en PET par injection-soufflage

Bordival, Maxime 06 July 2009 (has links) (PDF)
Lors de la fabrication d'une bouteille par injection-soufflage, le conditionnement thermique de la préforme joue un rôle essentiel. Nous proposons une procédure d'optimisation numérique permettant de calculer automatiquement les paramètres de réglage du four infrarouge. Dans un premier temps, l'algorithme d'optimisation de Nelder-Mead est couplé avec des simulations éléments finis de l'étape de soufflage, réalisées avec ABAQUS®. L'objectif est de calculer la distribution de température optimale de la préforme, permettant d'uniformiser l'épaisseur de la bouteille. Dans un second temps, un algorithme de programmation quadratique séquentielle est couplé avec un modèle numérique de chauffage infrarouge 3D développé au laboratoire. Cette méthode permet de calculer les paramètres optimaux pour le réglage du four. Des mesures expérimentales réalisées sur une machine de soufflage semi-industrielle ont permis de valider qualitativement notre approche pour une bouteille de géométrie simple. Les propriétés radiatives du PET sont mesurées par spectrométrie infrarouge. Ces mesures sont exploitées pour calculer l'absorption spectrale du rayonnement. Le modèle de chauffage est validé à l'aide de mesures thermographiques. Un capteur a été développé pour mesurer la résistance thermique de contact entre le polymère et le moule. Le débit d'air injecté dans la préforme a été mesuré, puis appliqué en tant de donnée d'entrée. La pression de soufflage est alors automatiquement calculée à chaque itération par un modèle thermodynamique. Les cinématiques de mise en forme, ainsi que les distributions d'épaisseurs calculées par le modèle sont conformes à celles mesurées sur un pilote de laboratoire.
10

Solutions solides de zirconium dans la cérine : modèle thermodynamique et stabilité thermique a haute température

Janvier, Catherine 02 April 1998 (has links) (PDF)
Les équilibres oxydes-dioxygène gazeux ainsi que la stabilité thermique texturale de six solutions solides de zirconium dans la cérine, Ce<sub>1-x</sub> Zr<sub>x</sub>O<sub>2</sub> (O

Page generated in 0.4718 seconds