• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 38
  • 17
  • 2
  • Tagged with
  • 119
  • 68
  • 54
  • 48
  • 48
  • 46
  • 33
  • 28
  • 25
  • 25
  • 25
  • 22
  • 19
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Local spectroscopy of correlated electron systems at metal surfaces

Wahl, Peter. January 2005 (has links)
Konstanz, Univ., Diss., 2004.
22

Schwefelinduzierte Strukturen auf der Palladium (111)-Oberfläche nach Segregation bzw. Adsorption von Schwefel

Rauch, Thomas. Unknown Date (has links)
Universiẗat, Diss., 1999--Osnabrück.
23

Numerical calculations for electronic transport through molecular systems

Dahlke, Robert. Unknown Date (has links) (PDF)
University, Diss., 2004--München.
24

Struktur von GaAs-Oberflächen und ihre Bedeutung für InAs-Quantenpunkte

Márquez Bertoni, Juan M. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2000--Berlin.
25

Shape and growth of InAs quantum dots on high-index GaAs(113)A, B and GaAs(2 5 11)A, B substrates

Temko, Yevgeniy. Unknown Date (has links) (PDF)
Techn. University, Diss., 2004--Berlin.
26

Eine neue Methode zur Detektion ballistischen Transports im Rastertunnelmikroskop: Die Molekulare Nanosonde / A new method for detecting ballistic transport in the scanning tunneling microscope: The molecular nanoprobe

Leisegang, Markus January 2021 (has links) (PDF)
Verlustarmer Ladungsträgertransport ist für die Realisierung effizienter und kleiner elektronischer Bauteile von großem Interesse. Dies hilft entstehende Wärme zu minimieren und den Energieverbrauch gleichzeitig zu reduzieren. Einzelne Streuprozesse, die den Verlust bei Ladungsträgertransport bestimmen, laufen jedoch auf Längenskalen von Nano- bis Mikrometern ab. Um diese detailliert untersuchen zu können, bedarf es Messmethoden mit hoher zeitlicher oder örtlicher Auflösung. Für Letztere gibt es wenige etablierte Experimente, häufig basierend auf der Rastertunnelmikroskopie, welche jedoch verschiedenen Einschränkungen unterliegen. Um die Möglichkeiten der Detektion von Ladungsträgertransport auf Distanzen der mittleren freien Weglänge und damit im ballistischen Regime zu verbessern, wurde im Rahmen dieser Dissertation die Molekulare Nanosonde charakterisiert und etabliert. Diese Messmethode nutzt ein einzelnes Molekül als Detektor für Ladungsträger, welche mit der Sondenspitze des Rastertunnelmikroskops (RTM) wenige Nanometer entfernt vom Molekül in das untersuchte Substrat injiziert werden. Die hohe Auflösung des RTM in Kombination mit der geringen Ausdehnung des molekularen Detektors ermöglicht dabei atomare Kontrolle von Transportpfaden über wenige Nanometer. Der erste Teil dieser Arbeit widmet sich der Charakterisierung der Molekularen Nanosonde. Hierfür werden zunächst die elektronischen Eigenschaften dreier Phthalocyanine mittels Rastertunnelspektroskpie untersucht, welche im Folgenden zur Charakterisierung des Moleküls als Detektor Anwendung finden. Die anschließende Analyse der Potentiallandschaft der Tautomerisation von H2Pc und HPc zeigt, dass die NH- Streckschwinung einem effizienten Schaltprozess zu Grunde liegt. Darauf basierend wird der Einfluss der Umgebung anhand von einzelnen Adatomen sowie des Substrats selbst auf den molekularen Schalter analysiert. In beiden Fällen zeigt sich eine signifikante Änderung der Potentiallandschaft der Tautomerisation. Anschließend wird der Einfluss geometrischer Eigenschaften des Moleküls selbst untersucht, wobei sich eine Entkopplung vom Substrat auf Grund von dreidimensionalen tert-Butyl-Substituenten ergibt. Zusätzlich zeigt sich bei dem Vergleich von Naphthalocyanin zu Phthalocyanin der Einfluss lateraler Ausdehnung auf die Detektionsfläche, was einen nicht-punktförmigen Detektor bestätigt. Im letzten Abschnitt werden zwei Anwendungen der Molekularen Nanosonde präsentiert. Zunächst wird mit Phthalocyanin auf Ag(111) demonstriert, dass die Interferenz von ballistischen Ladungsträgern auf Distanzen von wenigen Nanometern mit dieser Technik detektierbar ist. Im zweiten Teil zeigt sich, dass der ballistische Transport auf einer Pd(110)-Oberfläche durch die anisotrope Reihenstruktur auf atomarer Skala moduliert wird. / Low-loss charge carrier transport is of great interest for the realization of efficient and small electronic components. Improvements would minimize heat generation and reduce energy consumption at the same time. However, individual scattering processes that determine the loss in charge carrier transport occur on length scales from nanometers to micrometers. To study these in detail, measurement methods with high temporal or spatial resolution are required. For the latter, few established experiments exist, often based on scanning tunneling microscopy, which are however subject to various limitations. In order to improve the possibilities of detecting charge carrier transport at distances of the mean free path and thus in the ballistic regime, the molecular nanoprobe was characterized and established in this dissertation. This measurement technique uses a single molecule as a detector for charge carriers, which are injected into the substrate under investigation with the scanning tunneling microscope (STM) tip a few nanometers away from the molecule. The high resolution of the STM combined with the small size of the molecular detector allows atomic control of transport paths over a few nanometers. The first part of this work is devoted to the characterization of the molecular nanoprobe. For this purpose, the electronic properties of three phthalocyanines are first investigated by scanning tunneling spectroscopy, which will be applied in the following studies to characterize the molecular detector. The subsequent analysis of the potential landscape for tautomerization within H2Pc and HPc reveals that the N-H stretching mode underlies an efficient switching process. Based on these findings, the influence of the direct environment on the molecular switch is analyzed by means of individual adatoms as well as the substrate itself. In both cases, a significant change in the potential landscape of the tautomerization is shown. Subsequently, the influence of geometric properties of the molecule itself is investigated, revealing a decoupling from the substrate due to three-dimensional tert-butyl substituents. In addition, the comparison through naphthalocyanine to phthalocyanine reveals the influence of lateral expansion on the detection area, confirming a non-point molecular detector. In the last section, two applications of the molecular nanoprobe are presented. First, using phthalocyanine on Ag(111), it is demonstrated that the interference of ballistic charge carriers at distances of a few nanometers is detectable with this technique. In the second part, it is shown that the anisotropic Pd(110) surface structure leads to a strong modulation of the ballistic transport on the atomic scale.
27

Wechselwirkungen zwischen Kantenzuständen auf dem topologisch kristallinen Isolator Pb\(_{1-x}\)Sn\(_x\)Se / Interactions between edge states on the topologically crystalline insulator Pb\(_{1-x}\)Sn\(_x\)Se

Jung, Johannes January 2023 (has links) (PDF)
Einerseits besteht die einfachste Möglichkeit zum Ladungs- und Informationstransport zwischen zwei Punkten in deren direkter Verbindung durch eindimensionale Kanäle. Andererseits besitzen topologische Materialien exotische und äußerst vorteilhafte Eigenschaften, weshalb es nahe liegt, dass schon bald neue Anwendungen aus ihnen realisiert werden. Wenn diese beiden Entwicklungen zusammenkommen, dann ist ein grundlegendes Verständnis von Quanteninterferenz oder Hybridisierungseffekten in eindimensionalen, topologischen Kanälen von fundamentaler Wichtigkeit. Deshalb werden in der vorliegenden Arbeit Wechselwirkungen von eindimensionalen, topologisch geschützten Kantenzuständen, die an ungeradzahligen Stufenkanten auf der (001)–Oberfläche von Pb1−xSnxSe auftreten, untersucht. Aufgrund der lateralen Lokalisierung auf wenige Nanometer um eine Stufenkante herum und der Notwendigkeit zwischen gerad- und ungeradzahligen Stufenkantenhöhen zu unterscheiden, bieten sich die Rastertunnelmikroskopie und -spektroskopie als Methoden an. Die neu entdeckten Kopplungs- bzw. Wechselwirkungseffekte zwischen benachbarten Kantenzuständen treten auf, sobald der Stufe zu Stufe Abstand einen kritischen Wert von dkri ≈ 25nm unterschreitet. Dieses Kriterium kann durch verschiedene räumliche Anordnungen von Stufenkanten erfüllt werden. Infolgedessen werden sich kreuzende, parallel verlaufende und zusammenlaufende Stufenkanten genauer untersucht. Bei letzteren verändert sich entlang der Struktur kontinuierlich der Abstand und damit die Kopplungsstärke zwischen den beiden Randkanälen. Infolgedessen wurden drei Koppelungsregime identifiziert. (I) Ausgehend von einer schwachen Wechselwirkung zeigt der für die Kantenzustände charakteristische Peak im Spektrum zunächst eine Verbreiterung und Verminderung der Intensität. (II) Mit weiter zunehmender Wechselwirkung beginnt sich der Zustand in zwei Peaks aufzuspalten, sodass ab dkri ≈ 15nm an beiden Stufenkanten durchgehen eine Doppelpeak zu beobachten ist . Mit weiter abnehmendem Abstand erreicht die Aufspaltung Werte von einigen 10 meV, während sich die Intensität weiter reduziert. (III) Sobald zwei Stufenkanten weniger als etwa 5nm voneinander getrennt sind, konvergieren aufgrund der schwindenden Intensität und des sinkenden energetischen Abstands der beiden Peaks zu den van Hove Singularitäten die Spektren an den Stufenkanten gegen das Spektrum über einer Terrasse. i Die Aufspaltung verläuft in den Bereichen I und II asymmetrisch, d. h. ein Peak verbleibt ungefähr bei der Ausgangsenergie, während der andere mit zunehmender Kopplung immer weiter weg schiebt. Bezüglich der Asymmetrie kann kein Unterschied festgestellt werden, ob die zusammenlaufenden Stufenkanten eine Insel oder Fehlstelleninsel bilden oder ob die Stufenkanten sogar gänzlich parallel verlaufen. Es zeigt sich keine Präferenz, ob zunächst der niederenergetische oder der hochenergetische Peak schiebt. Erst im Regime starker Kopplung (III) kann beobachtet werden, dass beide Peaks die Ausgangsenergie deutlich verlassen. Im Gegensatz dazu kann bei sich kreuzenden Stufen ein erheblicher Einfluss der Geometrie, in Form des eingeschlossenen Winkels, auf das Spektrum beobachtet werden. Unabhängig vom Winkel existiert am Kreuzungspunkt selbst kein Kantenzustand mehr. Die Zustände an den vier Stufen beginnen, abhängig vom Winkel, etwa 10-15nm vor dem Kreuzungspunkt abzuklingen. Überraschenderweise zeigt sich dabei, dass im Fall rechtwinkliger Stufen gar keine Aufspaltung zu beobachten ist, während bei allen anderen Winkeln ein Doppelpeak festgestellt werden kann. Diese Entdeckung deutet auf Orthogonalität bezüglich einer Quantenzahl bei den beteiligten Kantenzustände hin. Neben einer nur theoretisch vorhergesagten Spinpolarisation kann dieser Effekt auch von dem orbitalem Charakter der beteiligten Dirac–Kegel verursacht sein. Da der topologische Schutz in Pb1−xSnxSe durch Kristallsymmetrien garantiert ist, wird als letzter intrinsischer Effekt der Einfluss von eindimensionalen Defekten auf die Kantenzustände untersucht. Berücksichtigt werden dabei ein nicht näher klassifizierbarer, oberflächennaher Defekt und Schraubversetzungen. In beiden Fällen kann ebenfalls eine Aufspaltung des Kantenzustands in einen Doppelpeak gezeigt werden. Im zweiten Teil dieser Arbeit werden die Grundlagen für eine Wiederverwendung von (Pb,Sn)Se–Oberflächen bei zukünftige Experimenten mit (magnetischen) Adatomen geschaffen. Durch Kombination von Inoenzerstäubung und Tempern wird dabei nicht nur eine gereinigte Oberfläche erzeugt, sondern es kann auch das Ferminiveau gezielt erhöht oder gesenkt werden. Dieser Effekt beruht auf eine Modifikation der Sn– Konzentration und der von ihr kontrollierten Anzahl an Defektelektronen. Als letztes sind erste Messungen an Cu- und Fe–dotierte Proben gezeigt. Durch die Adatome tritt eine n–Dotierung auf, welche den Dirac–Punkt des Systems in Richtung des Ferminiveaus verschiebt. Sobald er dieses erreicht hat kommt es zu Wechselwirkungsphänomenen an freistehenden Stufenkanten. Dies führt zu einer Doppelpeakstruktur mit einer feinen Aufspaltung von wenigen meV. Das Phänomen ist auf ein schmales Energiefenster beschränkt, bei dem die Lage des Dirac–Punkts nur etwa 5 meV (in beide Richtungen) von der des Ferminiveaus abweichen darf. / First, the simplest possibility of transporting charges and information between twopoints is given by there direct connection due to one dimensional channels. Second,topological materials have exotic and extremely advantageous properties, which makethem suitable for further applications. If these two come together, then a basic understandingof quantum interference or hybridization effects in one-dimensional, topologicalchannels is of fundamental importance. Therefore, in the present work, interactionsof one dimensional, topologically protected edge states, hosted at odd numbered stepedges on the (001) surface of (Pb,Sn)Se, are investigated.Due to the lateral localization to a few nanometers around a step edge and the needto differentiate between even and odd numbered step heights, scanning tunneling microscopyand spectroscopy are the tools of choice. The newly discovered coupling orinteraction effects between neighboring edge states appear as soon as their distancedecrease below a critical value of dcri ≈ 25 nm. This criterion can be met by variousspatial arrangements of step edges. As a result, crossing, parallel and converging stepedges are examined more closely.With the latter, the distance and thus the coupling strength between the two edgechannels changes continuously along the structure. As a result, three coupling regimeswere identified. (I) Starting from a weak interaction, the peak in the spectrum that ischaracteristic of the edge states initially shows a broadening and reduction in intensity.(II) With increasing interaction, the state begins to split into two peaks, so thatfrom dcri ≈ 15nm a double peak can be observed at both step edges. As the distancecontinues to decrease, the splitting reaches values of a few 10 meV, while the intensitycontinues to drop. (III) As soon as two step edges are separated by less than about 5nm, the spectra at the step edges converge against the spectrum over a terrace due tothe decreasing intensity and the decreasing energetic distance of the two peaks to thevan Hove singularities.iiiThe split is asymmetrical in areas I and II, which means that one peak remains roughlyat the original energy, while the other shifts further and further away with increasingcoupling. With regard to the asymmetry, no difference can be determined whether theconverging step edges form an island, a vacancy island or even run completely parallel.There is no preference as to whether the low energy or high energy peak shifts. Onlyin the regime of strong coupling (III) both peaks clearly leave the initial energy.In contrast to this, a considerable influence of the geometry on the spectrum can beobserved, with the included angle as parameter, for intersecting steps. Independentof the angle, there is no longer an edge state at the intersection itself. The statesat the four edges start to decay, depending on the angle, about 10-15nm before thepoint of intersection. Surprisingly, it turns out that in the case of right angled steps nosplitting at all can be observed, while a double peak can be found for all other angles.This discovery indicates orthogonality with respect to a quantum number in the edgestates involved. In addition to a theoretically predicted spin polarization, this effectcan also be caused by the orbital character of the Dirac cones involved.Since the topological protection in Pb1−xSnxSe is guaranteed by crystal symmetries,the last intrinsic effect to be examined is the influence of one dimensional defects onthe edge states. A near-surface defect, which cannot be classified in any more detailand a screw dislocation are taken into account. In both cases, a splitting of the edgestate into a double peak can also be shown.In the second part of this thesis the basis for reuse of surfaces in future experimentswith (magnetic) adatoms is created. The combination of sputtering and annealing notonly creates a cleaned surface, but in addition it tunes the Fermi level in a controllableway. This effect is based on a modification of the Sn concentration and the associatednumber of holes.Finally, the first measurements on Cu and Fe-doped samples are shown. The adatomscause n-doping, which shifts the Dirac point of the system in the direction of theFermi level. As soon as he has achieved this, there is an interaction phenomenon at thefreestanding step edges. This leads to a double peak structure with a fine split of a fewmeV. This phenomenon is limited to a narrow energy window in which the position ofthe Dirac point may only deviate by about 5 meV (in both directions) from that of theFermi level.
28

Gold-Induced Atomic Wires on Terraced Silicon Surfaces: Formation and Interactions of Silicon Spin Chains / Goldinduzierte Nanodrähte auf gestuften Silizium Oberflächen: Ausbildung und Wechselwirkung von Siliziumspinketten

Aulbach, Julian January 2018 (has links) (PDF)
Atomic nanowires formed by self-assembled growth on semiconducting surfaces represent a feasible physical realization of quasi-1D electron systems and can be used to study fascinating 1D quantum phenomena. The system in the focus of this thesis, Si(553)-Au, is generated by Au adsorption onto a stepped silicon surface. It features two different chain types, interspersed with each other: A Au chain on the terrace, and a honeycomb chain of graphitic silicon located at the step edge. The silicon atoms at the exposed edges of the latter are predicted to be spin-polarized and charge-ordered [1], leading to an ordered array of local magnetic moments referred to as ``spin chains''. The present thesis puts this spin chain proposal to an experimental test. A detailed scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) scrutiny reveals a distinct unoccupied density of states (DOS) feature localized at every third Si step-edge atom, which aligns perfectly with the density functional theory (DFT) prediction. This finding provides strong evidence for the formation of spin chains at the Si(553)-Au step edges, and simultaneously rules out the interpretation of previous studies which attributed the x3 step-edge superstructure to a Peierls instability. To study the formation of spin chains in further detail, an additional member of the so-called Si(hhk)-Au family -- Si(775)-Au -- is analyzed. Based on DFT modeling (performed by S.C. Erwin, Naval Research Laboratory, USA) and detailed STM and STS experiments, a new structure model for this surface is developed, and the absence of spin chains at the Si(775)-Au step edges is demonstrated. The different step-edge charge distributions of all known Si(hhk)-Au surfaces are traced back to an electron transfer between the terrace and the step edge. Accordingly, an unintentional structure defect should create a localized spin at the Si(775)-Au step edge. This prediction is verified experimentally, and suggest that surface chemistry can be used to create and destroy Si spin chains. Having clarified why spin chains form on some Si(hhk)-Au surfaces but not on others, various interaction effects of the Si(553)-Au spin chains are inspected. A collaborative analysis by SPA-LEED (M. Horn-von Hoegen group, University of Duisburg-Essen, Germany), DFT (S.C. Erwin), and STM reveals strong lateral coupling between adjacent spin chains, bearing interesting implications for their magnetic ordering. The centered geometry uncovered leads to magnetic frustration, and may stabilize a 2D quantum spin liquid. Moreover, a complex interplay between neighboring Au and Si chains is detected. Specifically, the interaction is found effectively ``one-way'', i.e., the Si step edges respond to the Au chains but not vice versa. This unidirectional effect breaks the parity of the Si chains, and creates two different configurations of step edges with opposite directionality. In addition to the static properties of the Si(553)-Au surface mentioned above, the occurrence of solitons in both wire types is witnessed in real space by means of high-resolution STM imaging. The solitons are found to interact with one another such that both move in a coupled fashion along the chains. Likewise, STM experiments as a function of the tunneling current suggest an excitation of solitons along the step edge by the STM tunneling tip. Solitons are also found to play an essential role in the temperature-dependent behavior of the Si(553)-Au step edges. It is an accepted fact that the distinct x3 superstructure of the Si(553)-Au step edges vanishes upon heating to room temperature. As a first step in exploring this transition in detail over a large temperature range, a previously undetected, occupied electronic state associated with the localized step-edge spins is identified by means of angle-resolved photoemission spectroscopy (ARPES). A tracking of this state as a function of temperature reveals an order-disorder-type transition. Complementary STM experiments attribute the origin of this transition to local, thermally activated spin site hops, which correspond to soliton-anitsoliton pairs. Finally, a manipulation of the Si(553)-Au atomic wire array is achieved by the stepwise adsorption of potassium atoms. This does not only increase the filling of the Au-induced surface bands culminating in a metal-insulator transition (MIT), but also modifies the Si step-edge charge distribution, as indicated by STM and ARPES experiments. [1] S. C. Erwin and F. Himpsel, Intrinsic magnetism at silicon surfaces, Nat. Commun. 1, 58 (2010). / Durch Selbstorganisation erzeugte atomare Nanodrähte auf Halbleiteroberflächen erlauben die experimentelle Realisierung quasi-eindimensionaler Elektronensysteme und ermöglichen so die Untersuchung faszinierender eindimensionaler Quantenphänomene. Das Nanodrahtsystem im Zentrum dieser Arbeit [Si(553)-Au] lässt sich durch Adsorption von Goldatomen auf eine gestufte Siliziumoberfläche herstellen. Es besteht aus zwei unterschiedlichen, alternierend angeordneten Kettenarten. Auf jeder Terrasse befindet sich eine Goldkette, während die Stufenkanten aus einer graphitartigen Honigwabenstruktur aus Silizium aufgebaut sind. Für die Stufenkantenatome der Siliziumhonigwabenkette wurde eine Ladungsordnung mit vollständiger Spin-Polarisation jedes dritten Stufenkantenatoms vorhergesagt [1]. Dies entspricht einer regelmäßigen Anordnung von lokalen magnetischen Momenten, die als ``Spinketten'' bezeichnet werden. Die vorliegende Arbeit unterzieht diese theoretische Voraussage einem experimentellen Test. Mittels Rastertunnelmikroskopie (engl. scanning tunneling microscopy, STM) und Rastertunnelspektroskopie (engl. scanning tunneling spectroscopy, STS) wurde die lokale Zu-standsdichte entlang der Stufenkante charakterisiert. Die experimentellen Befunde zeigen eine nahezu perfekte Übereinstimmung mit dem theoretisch vorhergesagten Spinketten-Szenario. Gleichzeitig konnte eine bis dato in der Literatur überwiegend favorisierte Peierls-Instabilität ausgeschlossen werden. Um die Ausbildung von Spinketten auf goldinduzierten gestuften Siliziumoberflächen genau-er zu verstehen, wurde ein weiteres Probensystem der sogenannten Si(hhk)-Au-Familie -- Si(775)-Au -- detailliert untersucht. Basierend auf Dichte-Funktional-Theorie Rechnungen (durchgeführt von S.C. Erwin, Naval Research Laboratory, USA) und STM/STS-Experimen-ten wurde ein neues Strukturmodell für diese Oberfläche entwickelt. Außerdem konnte die Abwesenheit von Spinketten an den Si(775)-Au-Stufenkanten nachgewiesen werden. Als Ursache für die variierende Ladungsanhäufung an den Stufenkanten der Si(hhk)-Au-Systeme konnte ein Ladungsaustausch zwischen der Terrasse und der Stufenkante ausgemacht werden. Weiter wurde gezeigt, dass ein struktureller Defekt einen lokalisierten Spin an der Si(775)-Au-Stufenkante erzeugen kann. Dies untermauert das Bild des Ladungstransfers zwischen Terrasse und Stufenkante und legt außerdem nahe, Siliziumspinketten mit Hilfe von Oberflächenchemie zu modifizieren. Neben der Etablierung des Spinketten-Szenarios wurden verschiedene Wechselwirkungseffekte der Si(553)-Au-Spinkette mit ihrer Umgebung untersucht. In Zusammenarbeit mit der Gruppen um Prof. M. Horn-von Hoegen (Universität Duisburg-Essen) und S.C. Erwin konnte eine starke laterale Kopplung zwischen benachbarten Spinketten festgestellt werden, welche interessante Konsequenzen für die magnetische Ordnung der lokalisierten Spins mit sich bringt. Die entdeckte zentrierte Dreiecksanordnung der Spins führt zu magnetischer Frustration und suggeriert die Ausbildung einer zweidimensionalen Spin-Flüssigkeit. Des Weiteren konnte ein unerwartetes Wechselspiel zwischen benachbarten Gold- und Siliziumketten festgestellt werden. Es zeigte sich, dass die Goldketten auf die Siliziumketten einwirken, jedoch nicht umgekehrt. Diese lediglich in einer Richtung wirkende Beeinflussung erzeugt einen Symmetriebruch entlang der Siliziumstufenkante, der dazu führt, dass zwei Arten von Stufenkanten mit unterschiedlicher Direktionalität auftreten. Darüber hinaus konnte mit Hilfe hochaufgelöster STM-Aufnahmen die Existenz von Solitonen in beiden Kettenarten nachgewiesen werden. Dabei stellte sich heraus, dass die beiden Soliton-Typen miteinander wechselwirken und sich daher wider Erwarten nicht unabhängig sondern aneinander gekoppelt durch die Kettenstrukturen bewegen. Weiterhin suggerieren tunnelstromabhängige STM-Messungen, dass sich Solitonen in der Siliziumkette mit der Tunnelspitze des Rastertunnelmikroskops anregen lassen. Solitonen konnte außerdem eine wichtige Rolle im temperaturabhängigen Verhalten der Siliziumstufenkanten zugeschrieben werden. Es war bereits seit Längerem bekannt, dass die ausgeprägte x3 Überstruktur, die sich bei tiefen Temperaturen entlang der Stufenkante beobachten lässt, bei Raumtemperatur verschwindet. Um diese Temperaturabhängigkeit genauer zu untersuchen, wurde ein neu entdeckter, elektronischer Zustand, der sich den an der Stufenkanten lokalisierten Spins zuordnen lässt, mittels winkelaufgelöster Photoelektronenspektroskopie temperaturabhängig analysiert. Dabei stellte sich heraus, dass es sich bei dem Phasenübergang um einen speziellen Ordnungs-Unordnungs-Übergang handelt. Mit Hilfe komplementärer STM-Messungen konnte ein thermisch aktivierter Platzwechsel der lokalisierten Elektronenspins (d.h. die Erzeugung von Soliton-Antisoliton-Paaren) für das temperaturabhängige Verhalten der Siliziumstufenkante verantwortlich gemacht werden. Weiterhin konnte eine gezielte Manipulation des Si(553)-Au-Nanodrahtsystems durch sukzessive Dotierung mit Kaliumatomen realisiert werden. Dabei wurde ein Anstieg der Befüllung der goldinduzierten Oberflächenbänder, der letztendlich zu einem Metall-Isolator-Übergang führt, beobachtet. Außerdem deuten die experimentellen Befunde auf eine Modifizierung der Spinketten entlang der Stufenkante hin. [1] S. C. Erwin and F. Himpsel, Intrinsic magnetism at silicon surfaces, Nat. Commun. 1, 58 (2010).
29

Spin-polarized scanning tunneling microscopy study of the Fe(001)-p(1x1)O surface and antiferromagnetic Mn films on Fe(001)-p(1x1)O and Cu3Au(100)

Tange, Achiri Celestine January 2009 (has links)
Halle, Univ., Naturwissenschaftliche Fakultät II, Diss., 2009. / Tag der Verteidigung: 14.04.2009.
30

In-situ-STM-Studie zum Anioneneinfluss auf die Abscheidung von Cadmium auf Kupferelektroden

Hommrich, Joerg. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Bonn.

Page generated in 0.0831 seconds