Spelling suggestions: "subject:"rateless coding"" "subject:"gateless coding""
1 |
Coding for Cooperative CommunicationsUppal, Momin Ayub 2010 August 1900 (has links)
The area of cooperative communications has received tremendous research interest
in recent years. This interest is not unwarranted, since cooperative communications
promises the ever-so-sought after diversity and multiplexing gains typically
associated with multiple-input multiple-output (MIMO) communications, without
actually employing multiple antennas. In this dissertation, we consider several cooperative
communication channels, and for each one of them, we develop information
theoretic coding schemes and derive their corresponding performance limits. We next
develop and design practical coding strategies which perform very close to the information
theoretic limits.
The cooperative communication channels we consider are: (a) The Gaussian relay
channel, (b) the quasi-static fading relay channel, (c) cooperative multiple-access
channel (MAC), and (d) the cognitive radio channel (CRC). For the Gaussian relay
channel, we propose a compress-forward (CF) coding strategy based on Wyner-Ziv
coding, and derive the achievable rates specifically with BPSK modulation. The CF
strategy is implemented with low-density parity-check (LDPC) and irregular repeataccumulate
codes and is found to operate within 0.34 dB of the theoretical limit. For
the quasi-static fading relay channel, we assume that no channel state information
(CSI) is available at the transmitters and propose a rateless coded protocol which
uses rateless coded versions of the CF and the decode-forward (DF) strategy. We
implement the protocol with carefully designed Raptor codes and show that the implementation suffers a loss of less than 10 percent from the information theoretical limit. For
the MAC, we assume quasi-static fading, and consider cooperation in the low-power
regime with the assumption that no CSI is available at the transmitters. We develop
cooperation methods based on multiplexed coding in conjunction with rateless
codes and find the achievable rates and in particular the minimum energy per bit to
achieve a certain outage probability. We then develop practical coding methods using
Raptor codes, which performs within 1.1 dB of the performance limit. Finally, we
consider a CRC and develop a practical multi-level dirty-paper coding strategy using
LDPC codes for channel coding and trellis-coded quantization for source coding. The
designed scheme is found to operate within 0.78 dB of the theoretical limit.
By developing practical coding strategies for several cooperative communication
channels which exhibit performance close to the information theoretic limits, we show
that cooperative communications not only provide great benefits in theory, but can
possibly promise the same benefits when put into practice. Thus, our work can be
considered a useful and necessary step towards the commercial realization of cooperative
communications.
|
2 |
Performance evaluation and protocol design of fixed-rate and rateless coded relaying networksNikjah, Reza 06 1900 (has links)
The importance of cooperative relaying communication in substituting for, or complementing,
multiantenna systems is described, and a brief literature review is presented.
Amplify-and-forward (AF) and decode-and-forward (DF) relaying are investigated and
compared for a dual-hop relay channel. The optimal strategy, source and relay optimal
power allocation, and maximum cooperative gain are determined for the relay channel. It
is shown that while DF relaying is preferable to AF relaying for strong source-relay links,
AF relaying leads to more gain for strong source-destination or relay-destination links.
Superimposed and selection AF relaying are investigated for multirelay, dual-hop relaying.
Selection AF relaying is shown to be globally strictly outage suboptimal. A necessary
condition for the selection AF outage optimality, and an upper bound on the probability of
this optimality are obtained. A near-optimal power allocation scheme is derived for superimposed
AF relaying.
The maximum instantaneous rates, outage probabilities, and average capacities of multirelay,
dual-hop relaying schemes are obtained for superimposed, selection, and orthogonal
DF relaying, each with parallel channel cooperation (PCC) or repetition-based cooperation
(RC). It is observed that the PCC over RC gain can be as much as 4 dB for the outage
probabilities and 8.5 dB for the average capacities. Increasing the number of relays deteriorates
the capacity performance of orthogonal relaying, but improves the performances of
the other schemes.
The application of rateless codes to DF relaying networks is studied by investigating
three single-relay protocols, one of which is new, and three novel, low complexity multirelay
protocols for dual-hop networks. The maximum rate and minimum energy per bit and
per symbol are derived for the single-relay protocols under a peak power and an average
power constraint. The long-term average rate and energy per bit, and relay-to-source usage
ratio (RSUR), a new performance measure, are evaluated for the single-relay and multirelay
protocols. The new single-relay protocol is the most energy efficient single-relay scheme
in most cases. All the multirelay protocols exhibit near-optimal rate performances, but are
vastly different in the RSUR.
Several future research directions for fixed-rate and rateless coded cooperative systems,
and frameworks for comparing these systems, are suggested. / Communications
|
3 |
Performance evaluation and protocol design of fixed-rate and rateless coded relaying networksNikjah, Reza Unknown Date
No description available.
|
Page generated in 0.0922 seconds