Spelling suggestions: "subject:"rayleigh scattering."" "subject:"kayleigh scattering.""
41 |
Optické vlákno jako distribuovaný teplotní senzor / Optical fiber as a distributed temperature sensorVošček, Jakub January 2020 (has links)
The financial requirements between fiber optic sensors and conventional sensors are gradually declining, which, despite many advatages and wide range of applicationas, has slowed down the demand for these sensors. With the demand for fiber optic sensors also grow the requirements for the parameters of these sensors. This thesis deals with distributed temperature fiber optic sensors. Non--linear phenomen in optical fibers, such as Raman scattering is used for measuring with these sensors. This scatterin was used to obtain information about temperature, which effected the optical cable under the test.
|
42 |
Mesures réparties par réflectométrie fréquentielle sur fibre optique / OFDR for optical fiber detectorsBoldyreva, Ekaterina 20 October 2016 (has links)
Les travaux de la présente thèse concernent l’étude théorique et la réalisation d’un Capteur réparti à Fibres Optiques fondé sur la réflectométrie fréquentielle et la rétrodiffusion de Rayleigh. La genèse de cette méthode remonte aux années 80 pour les mesures distribuées. Il y a un peu plus d’une dizaine d’années qu’elle a été mise en œuvre secrètement pour les meures réparties (continument sensibles) par la société américaine « Luna Innovations ». Cette approche permettant de réaliser des profils continus le long de la fibre des paramètres environnants (température et déformation principalement) offre une très bonne résolution spatiale ainsi qu’une résolution de mesure fine et présente donc un grand intérêt pour de nombreuses applications, venant ainsi en complément des techniques reposant sur la diffusion Raman ou Brillouin. L'aspect théorique de cette méthode dite OFDR Rayleigh a été analysé. Pour effectuer une mesure profilométrique il est nécessaire de déterminer simultanément deux informations : la distance physique allant de l’entrée de la fibre jusqu'au point où un paramètre physique à mesurer a été appliqué, et le paramètre physique proprement dit. Pour réaliser cette mesure un lien entre l'influence du paramètre d’influence et le changement d'indice du cœur de la fibre sous test doit être exploité. Il s’agit donc des sensibilités de mesure, mais aussi de l’influence de l’environnement sur le chemin optique parcouru, et donc sur la localisation précise des points de mesure. Ces différents aspects ont donc été analysés et rapportés dans le présent mémoire. Pour mettre en œuvre cette technique fréquentielle, et en particulier son traitement de signal, relativement complexe, deux méthodes différentes ont été proposées : la première dite « corrélationnelle » (mise en œuvre par « Luna Innovations » mais très peu documentée) et la méthode « tensorielle » proposée uniquement dans le cadre de la présente étude. Etant fondée sur les mesures répétitives des décalages spectraux induits par le paramètre physique à mesurer le long de la fibre, la méthode corrélationnelle est plus universelle, s’adressant à tous types de paramètres d’influence. Pourtant, elle s’avère moins précise du fait d'une erreur systématique dans le calcul des décalages spectraux. La méthode tensorielle, quant à elle, fournit un résultat plus précis, cependant elle n'est applicable que pour les mesures de déformations, puisque reposant sur l'effet élasto-optique dans le cœur de la fibre. Une procédure de traitement de signal a ensuite été élaborée pour les deux méthodes précitées, la corrélationnelle et la tensorielle. Les performances capacités de l'appareil dont nous disposons, Luna OBR 4600, ont également été montrées, tant en ce qui concerne les mesures de température que de déformations. Un banc expérimental mettant en œuvre cette méthode de mesure OFDR-Rayleigh a également été conçu est mis au point au laboratoire. Un logiciel de traitement des données a de fait été élaboré est réalisé. Ce programme a été testé à l'aide d'une simulation et grâce à l’utilisation des données brutes délivrées par l’appareil Luna OBR 4600. Plusieurs tests du programme de traitement des données brutes de cet instrument ont été réalisés. Les résultats de ces tests peuvent être considérés plutôt comme satisfaisants, étant globalement en bon accord avec les résultats fournis directement par l'instrument commercial OBR 4600. Au-delà, de nombreux exemples d'applications innovantes de la méthode Rayleigh OFDR ont été présentés et illustrés. Parmi ceux-ci, citons, le système de détection de fuites de sodium liquide pour la surveillance de fonctionnement des circuits de refroidissement des réacteurs de génération IV que nous avons élaboré, grâce à cette méthode Rayleigh OFDR, et un prototype industriel d'un tel système proposé. Enfin, l’analyse des points pouvant faire l’objet d’améliorations et/ou de marges de progrès a été menée, et est rapportée en fin de mémoire. / The present PhD thesis have been carried out at the Laboratoire de Mesures Optiques (Optical Measurement Laboratory) based at CEA Saclay Nuclear Research Center, France. It concerns theoretical analysis and experimental realizations of a “distributed Optical Fiber Sensor” based on Optical Frequency Domain Reflectometry using the Rayleigh backscattering phenomena. As the OFS community know, such technology has been developed by the US company Luna Innovations Inc., which keeps carefully secret any details of both the technology involved and the signal processing of such instruments, named OBR (Optical Backscattered Reflectometer). Advantageously, the present Rayleigh-OFDR method provides a very high spatial resolution (in comparison with other methods based on reflectometry, i.e. OTDR, DTS Raman, Brillouin BOTDR and BOTDA…) and so remains extremely sought for many applications, especially for Structural Health Monitoring. In the present PhD thesis the theoretical aspects of the Rayleigh OFDR method has been presented. As a reminder, in order to measure a physical parameter profile along the fiber, it is required to determine two subjects simultaneously: the distance at which the physical parameter is applied (i.e. the sensor address) to the fiber under test, and the amplitude of this parameter (i.e. “the measurement” itself). A relation between the influence of any environment parameter (temperature, strain, etc.) and the fiber core refractive index changes has to be used. These relations have been shown, as far as the hypothesis linked to the theoretical aspects. Two different methods for such measurement have been proposed: first of all the “correlation method” (used by Luna) and second “a tensor-based method”, fully innovative as developed during the present PhD thesis. The correlation method may be considered as more “universal” as based on the measurement of spectral shifts caused by the physical parameter to measure. But, in the same time, we consider it is less accurate, as a systematic error may somehow fail the spectral shift calculation algorithm. The tensor method do not suffer of such systematic error, but it remains only applicable to strain sensing, as based on the elasto-optic effect. Signal processing procedure has been elaborated and tested for both methods, and of course discussed in the manuscript. In the same time, performances of the existing Luna OBR 4600 reflectometer has been tested at Lab. and are reported for both temperature and strain measurements. An optical mock-up for Rayleigh OFDR method has also been developed. A software, dedicated to signal processing has been fully developed either. This program has been tested for simulated sensing signals and for raw data delivered by the Luna OBR 4600 reflectometer. Results of such tests could be considered as satisfactory, even some questions to be solved remains. Finally, some practical examples of Rayleigh OFDR industrial applications have been shown and detailed. Moreover, in such context of real applications on field, an innovative Rayleigh OFDR system devoted to liquid sodium leakage detection around secondary cooling circuitry of generation IV nuclear reactors has been developed and tested on a nuclear installation. An industrial prototype of such measurement system has been elaborated. Finally, way of progress are analyzed and discussed for future R&D activities.
|
43 |
Determination of diffusivities in fluid mixtures using light scattering techniques in and out of equilibriumWu, Wenchang, Rausch, Michael H., Giraudet, Cédric, Fröba, Andreas P. 11 July 2022 (has links)
No description available.
|
44 |
Surface-Enhanced Raman Spectroscopy for Environmental Analysis: Optimization and QuantitationWei, Haoran 27 February 2018 (has links)
Fast, sensitive, quantitative, and low-cost analysis of environmental pollutants is highly valuable for environmental monitoring. Due to its single-molecule sensitivity and fingerprint specificity, surface-enhanced Raman spectroscopy (SERS) has been widely employed for heavy metal, organic compound, and pathogen detection. However, SERS quantitation is challenging because 1) analytes do not stay in the strongest enhancing region ("hot spots") and 2) SERS reproducibility is poor. In this dissertation, gold nanoparticle/bacterial cellulose (AuNP/BC) substrates were developed to improve SERS sensitivity by increasing hot spot density within the laser excitation volume. Environmentally relevant organic amines were fixed at "hot spots" by lowering solution pH below the analyte pKa and thus enabling SERS quantitation. In addition, a new SERS internal standard was developed based upon the electromagnetic enhancement mechanism that relates Rayleigh (elastic) and Raman (in-elastic) scattering. Rayleigh scattering arising from the amplified spontaneous emission of the excitation laser was employed as a normalization factor to minimize the inherent SERS signal variation caused by the heterogeneous distribution of "hot spots" across a SERS substrate. This highly novel technique, hot spot-normalized SERS (HSNSERS), was subsequently applied to evaluate the efficiency of SERS substrates, provide in situ monitoring of ligand exchange kinetics on the AuNP surface, and to reveal the relationship between the pKa of aromatic amines and their affinity to citrate-coated AuNPs (cit-AuNPs). Finally, colloidally stable stable pH nanoprobes were synthesized using co-solvent mediated AuNP aggregation and subsequent coating of poly(ethylene) glycol (PEG). These nanoprobes were applied for pH detection in cancer cells and in phosphate buffered aerosol droplets. The latter experiments suggest that stable pH gradients exist in aerosol droplets. / PHD / Traditional analytical methods, such as gas chromatography/mass spectroscopy, liquid chromatography/mass spectroscopy, etc., cannot meet the demand for rapid screening of target environmental pollutants in drinking water. This issue arises due to the requirements for time-consuming sample pre-treatment, well-trained experts, complex instrumental parameter optimization, and scale challenges that limit onsite measurement. Surface-enhanced Raman spectroscopy is a promising approach to overcome these limitations. To improve SERS quantitation, surface-enhanced elastic scattering was developed as a novel internal standard to account for the SERS signal variation caused by substrate heterogeneity (“hot spot” normalization). Compared with traditional SERS internal standards, using scattered light as an internal standard reduces cost, time, interference, and experimental complexity for SERS detection. With this novel approach, the kinetics of adsorption/desorption of guest ligands/citrate onto/from the AuNP surface were quantified in situ and in real time. In addition, the SERS intensities of organic amines acquired at different solution pH values were differentiated using “hot spot” normalization, which revealed the relationship between aromatic amine pK<sub>a</sub> and their affinity to the AuNP surface. Finally, the chemistry in confined aqueous environments, such as aerosol droplets, membrane channels, and cells, is challenging to probe using conventional analytical tools due to their inaccessible small volumes. To address this problem, SERS pH nanoprobes were synthesized and used to detect the pH inside cancer cells and micrometer-sized aerosol droplets.
|
45 |
Filtered Rayleigh Scattering with an Application to Force Component DecompositionPowers, Sean William 16 May 2023 (has links)
Doctor of Philosophy / Filtered Rayleigh scattering (FRS) is a laser-based measurement technique that makes use of the scattering of light off particles that are much smaller than the wavelength of light that hits them (i.e., Rayleigh scattering of air molecules). The scattered laser light is altered after encountering particles in predictable ways that can be related to changes in velocity, temperature, and density. However, other sources of scattered light interfere with the pure Rayleigh scattering signal such as Mie and background scattering. Mie scattering is the scattering of light off particles that are much bigger than the wavelength of light that hits them (i.e., dust particles suspended in air). Background scattering is the laser light scattered off physical objects that reflect back into the region of interest. The different types of scattering are accounted for with intensive modeling and iterative fitting schemes where the error between simulated data and experimental data is minimized. This fit allows for velocity, temperature, and density information to be extracted from the measured scattered light. This iterative scheme is then applied to experimental measurements on the ground with mini turbojet engines as well as full-scale turbofan engines. A data grouping technique is derived such that the total measured force using FRS can be divided into individual contributions from different parts of the engine. These developed techniques have laid the foundation for future in-flight measurements of engine forces.
|
46 |
Multi-Property Internal Flow Field Quantification using Molecular Filtered Rayleigh ScatteringBoyda, Matthew Thomas 14 January 2025 (has links)
Foundational approaches for realizing practical, non-intrusive measurements using filtered Rayleigh scattering (FRS) are presented and analyzed for the multi-property quantification of internal flow fields. Validation is challenging in applying computational fluid dynamics (CFD) solutions to real-world scenarios, necessitating benchmark measurements with well-defined uncertainties. The ideal instrument for achieving the required measurements should be non-intrusive and require no particulate or gas seeding. One approach that satisfies these requirements is filtered Rayleigh scattering. FRS is a laser-based optical diagnostic technique that allows for the simultaneous, non-intrusive measurement of three-component velocity, static temperature, and static density everywhere within a two-dimensional plane illuminated by laser light without using any form of flow seeding. The major disadvantage of FRS is that it is very susceptible to signal contamination from particles and surfaces illuminated by the probing laser source. The effects of these contamination sources of the FRS signal are quantified as a function of their intensity relative to the Rayleigh scattered light. As the most significant contributor to Rayleigh scattering contamination, methods for reducing geometric or background contributions were investigated. Structured illumination was applied in cross-correlation Doppler global velocimetry to reduce geometric scattering contributions in image acquisition, demonstrating the removal of background scattering biases in an FRS-similar technique. For multi-property measurements, it is shown that with only an order of magnitude estimate of Mie and geometric scattering, a range of wavenumbers termed the rejection region can be pre-defined such that molecular iodine absorbs the contamination. At the same time, Rayleigh scattered light can pass through. Mie and geometric scattering contributions are reduced to negligible levels within the rejection region, allowing for unbiased temperature and density measurement. Additionally, a method for determining only Doppler shift, desirable due to its increased processing speed and spatial resolution, was developed and shown to be robust to at least one order of magnitude greater Mie and geometric scattering than other methods. The biases associated with sampling a statistical average of the flow using time-averaged FRS were also investigated. The result is that measuring flow properties with the "constant in time" assumption is valid up to a turbulent intensity of 20%, resulting in biases in velocity and temperature greater than 10% of the measurement uncertainties predicted without these contributions. These advancements allow researchers to optimize measurement parameters and predict uncertainties before integrating them into a facility. These methods were implemented in a turbulent, highly distorted internal flow environment with Mie and background scattering present. Measurement uncertainties for vector velocity components, static temperature, and static density are predetermined using a 95% confidence interval on the Monte Carlo simulation results. Derived measurement uncertainties are calculated by propagating the results of the Monte-Carlo simulation. Measurements are compared to reference five-hole probe and particle image velocimetry measurements to assess the validity of the predicted uncertainty bounds. The results from this study show good agreement in the measurement of axial velocity and derived circumferential and radial flow angles when compared to reference measurements. These comparisons typically yield measurements that measure the same value as the five-hole probe data within the pre-defined uncertainty bounds of 9 m/s, 1.0°, and 3.8°, with significant deviations occurring at radii greater than 71% for tangential flow angle and radii greater than 55% for radial flow angle. Compared to facility average measurements, static density and static pressure data collected over the entire plane show RMSD values comparable to predicted measurement uncertainties of 0.043 kg/m^3 and 4.0 kPa, respectively. For the same comparison, temperature measurements show a greater RMSD than the predicted uncertainty of 8.4 K. While additional work remains to identify sources of bias error in some measurements, this work lays the foundation for FRS-based diagnostics to be used as a replacement or supplemental measurement technique in quantifying the state of fluid flow fields. / Doctor of Philosophy / Rayleigh scattering is a process that results from the interaction of light with microscopic particles that, whether we know it or not, we experience every day. When sunlight interacts with air molecules, the light scattered to our eyes is blue. The fact that the sky appears blue indicates a key property of Rayleigh scattering in that it is most efficient for the shortest wavelengths. What isn't apparent is that a whole host of other properties can be extracted from observed scattering by imaging it with a camera and a specialized filter when illuminated by a narrow wavelength laser. The problem is that a few dust particles, small enough to pass through a household air filter, can scatter more light than all the air molecules in a shot glass, with laser light scattering off large surfaces even more intense. The primary focus of this dissertation is to define Foundational approaches for realizing practical, non-intrusive filtered Rayleigh scattering techniques and methods necessary so that the light scattered from air molecules can be measured while avoiding the scattering from particles and surfaces. These approaches enable the measurement of the three-component velocity, temperature, and density of the gas being illuminated without the measurement affecting the flow itself. Because all these properties can be measured simultaneously, Rayleigh scattering provides one of the most comprehensive experimental measurement techniques available to researchers, making it highly desirable in quantifying gaseous flows and validating computational fluid dynamics calculations. Measurements collected with the techniques outlined in this work are validated experimentally using reference measurements in a large-scale internal flow facility, providing the groundwork for future applications of Rayleigh scattering-based diagnostics.
|
47 |
BURST-MODE MOLECULAR FILTERED RAYLEIGH SCATTERING FOR GAS-DYNAMIC MEASUREMENTSAmanda Marie Braun (17520657) 03 December 2023 (has links)
<p dir="ltr">From transonic to hypersonic regimes, the characterization of high-speed flow dynamics is critical for the development, testing, and improvement of launch and reentry vehicles, boost-glide vehicles, and thermal protection systems. The design of this technology often relies on computational/empirical models for predictions which make quantitative thermodynamic measurements crucial for numerical validation. Laser diagnostic techniques facilitate non-intrusive, <i>in situ</i> measurements of fluid dynamic properties as well as visualization of flows, shocks, and boundary layer interactions. However, many diagnostics rely on seeding the flow with foreign materials to make measurements, such as the application of particle image velocimetry (PIV), Doppler global velocimetry (DGV), and planar laser-induced fluorescence (PLIF). Molecular filtered Rayleigh scattering (FRS) diagnostics are attractive for flow characterization due to the fact that pressure, temperature, density and velocity measurements can be made directly from air or N<sub>2</sub> molecules without the need for seeding materials. The development of the burst-mode laser (BML) has enabled high-energy pulses generated at the rates necessary to resolve phenomena such as instabilities in boundary-layers and shock-wave evolution using Rayleigh scattering methods. The goal of this dissertation is to advance molecular burst-mode FRS for quantitative, high resolution, multi-parameter measurements. For fixed-wavelength FRS measurements, the spectral characteristics of a BML system were investigated and improved by integrating an etalon for spectral-gating. For multi-parameter measurements, two strategies for wavelength-agility, the ability to quickly switch between two or more laser wavelengths, of the BML were explored: frequency-scanning and frequency-shifting. The frequency-scanning FRS (FS-FRS) technique measurement rate was increased to 1 kHz and demonstrated for 1-ms pressure, temperature, and radial velocity measurements in an underexpanded jet flow. Building upon this, an acousto-optic modulator-based method was implemented to generate frequency-shifted pulses. The rapid frequency-shifting increased the effective FRS multi-parameter measurement rate to 25 kHz and planar pressure, temperature, and radial velocity measurements were captured in an overexpanded jet flow. Finally, design tools for the laser configuration of wavelength-agile FRS were developed for the optimization of relative absolute measurement errors.</p>
|
48 |
Photonic Crystals with Active Organic MaterialsWu, Yeheng 31 March 2010 (has links)
No description available.
|
49 |
ULTRAVIOLET RAYLEIGH SCATTER IMAGING FOR SPATIAL TEMPERATURE PROFILES IN ATMOSPHERIC MICRODISCHARGESCaplinger, James E. 04 June 2014 (has links)
No description available.
|
50 |
Fuel Oxidation and Ignition by Nanosecond Pulse Discharges at Elevated TemperaturesYin, Zhiyao 13 September 2013 (has links)
No description available.
|
Page generated in 0.0726 seconds