• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'un "kinésithérapeute embarqué" dans le but d'améliorer le traitement de la scoliose / Development of an "embedded physiotherapist" for improving scoliosis treatment

Struber, Lucas 11 October 2016 (has links)
Ces travaux avaient pour objectif la preuve de concept et le développement d’un dispositif embarqué sur un T-shirt visant à terme à se substituer au corset afin de pouvoir améliorer la prise en charge des patients scoliotiques. Il s’agissait d’orienter les soins de la scoliose vers un traitement permettant au patient de conserver l’ensemble de sa mobilité et de rééquilibrer l’activité des muscles de son tronc. Tout d’abord, une étude clinique comparative entre sujets sains, patients scoliotiques lombaires et patients scoliotiques thoraciques a été menée afin de mettre en évidence des différences cinématiques et posturales potentiellement corrigeables, à travers l’étude de mouvements simples standardisés. Ensuite, le dispositif baptisé « kinésithérapeute embarqué » a été développé. Son but est de détecter des anomalies cinématiques ou de mauvaises postures chez le patient afin de les lui signaler pour lui permettre une autocorrection de ses défauts. Le T-shirt permet alors une mesure précise des mouvements de l’utilisateur en temps-réel et sans dispositif externe, à l’aide de centrales inertielles. Deux feedbacks ont été conçus répondant à deux utilisations différentes, l’un vibro-tactile pour une correction posturale en ambulatoire au cours de la journée, et l’autre visuel permettant d’apprendre et d’entraîner des mouvements spécifiques lors de séances de kinésithérapie à domicile. / The purpose of this thesis was the proof of concept and the development of an embedded device on a T-shirt aiming in the future to replace the brace for improving the medical care of scoliotic patients. The aim was to orient scoliosis care toward a treatment allowing a patient to keep his/her full mobility and rebalancing his trunk muscles. First, a comparative clinical study between healthy subjects, lumbar scoliotic patients and thoracic scoliotic patients was conducted in order to highlight kinematic and postural differences potentially correctable through the study of simple and standardized movements. Then, the so-called “embedded physiotherapist” device has been developed. Its aim is to detect patient’s kinematic singularities or bad postures and to alert him/her for an auto-correction of the defect. Thus, the T-shirt is able to accurately measure user’s motion in real-time and without any external device, using inertial measurement units. Two feedback have been designed for satisfying two different purposes, first a vibro-tactile one for postural corrections during the day, and a visual one allowing the user to learn and train specific motions during physiotherapy sessions at home.
2

High Accuracy Real-time GPS Synchronized Frequency Measurement Device for Wide-area Power Grid Monitoring

Xu, Chunchun 04 May 2006 (has links)
Frequency dynamics is one of the most important signals of a power system, and it is an indicator of imbalance between generation and load in the system. The Internet-based real-time GPS-synchronized wide-area Frequency Monitoring Network (FNET) was proposed to provide imperative frequency dynamics information for a variety of system-wide monitoring, analysis and control applications. The implementation of FNET has for the first time made the synchronized observation of the entire U.S. power network possible with very little cost. The FNET is comprised of many Frequency Disturbance Recorders (FDR) geographically dispersed throughout the U.S. and an Information Management System (IMS), currently located at Virginia Tech. The FDR works as a sensor, which performs local measurements and transmits calculations of frequency, voltage magnitude and voltage angle to the remote servers via the Internet. Compared with its commercial counterpart Phasor Measurement Unit (PMU), FDR provides less expensive version for networked high-resolution real-time synchronized. The improved single phase algorithm in the FDRs made it possible to measure at 110V level which is much more challenging than PMUs due to the noise involved at this level. This research work presents the challenges and issues of both software and hardware design for the novel measurement device FDR, which is one of the devices with the highest dynamic precision for power system frequency measurement. The DFT-based Phasor Angle Analysis algorithm has been improved to make sure the high-resolution measuring FDRs are installed at residential voltage outlets, instead of substation high-voltage inputs. An embedded 12-channel timing GPS receiver has been integrated to provide an accurate timing synchronization signal, UTC time stamp, and unit location. This research work also addresses the harmonics, voltage swing and other noise components' impacts on the measurement results, and the optimized design of filters and a coherent sampling scheme to reduce or eliminate those impacts. The verification test results show that the frequency measurement accuracy of the FDR is within +/-0.0005Hz, and the time synchronization error is within +/-500ns with suitable GPS antenna installation. The preliminary research results show the measurement accuracy and real-time performance of the FDR are satisfactory for a variety of FNET applications, such as disturbance identification and event location triangulation. / Ph. D.

Page generated in 0.0524 seconds