• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 15
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wide Area Power System Monitoring Device Design and Data Analysis

Khan, Kevin Jamil Hiroshi 14 September 2006 (has links)
The frequency disturbance recorder (FDR) is a cost effective data acquisition device used to measure power system frequency at the distribution level. FDRs are time synchronized via the global positioning system (GPS) timing and data recorded by FDRs are time stamped to allow for comparative analysis between FDRs. The data is transmitted over the internet to a central server where the data is collected and stored for post mortem analysis. Currently, most of the analysis is done with power system frequency. The purpose of this study is to take a first in depth look at the angle data collected by FDRs. Different data conditioning techniques are proposed and tested before one is chosen. The chosen technique is then used to extract useable angle data for angle analysis on eight generation trip events. The angle differences are then used to create surface plot angle difference movies for further analysis. A new event detection algorithm, the k-means algorithm, is also presented in this paper. The algorithm is proposed as a simple and fast alternative to the current detection method. Next, this thesis examines several GPS modules and recommends one for a replacement of the current GPS chip, which is no longer in production. Finally, the manufacturing process for creating an FDR is documented. This thesis may have raised more questions than it answers and it is hoped that this work will lay the foundation for further analysis of angles from FDR data. / Master of Science
2

Wide-Area Measurement Application and Power System Dynamics

Chen, Lang 01 December 2011 (has links)
Frequency monitoring network (FNET) is a GPS-synchronized distribution-level phasor measurement system. It is a powerful synchronized monitoring network for large-area power systems that provides significant information and data for power system situational awareness, real time and post-event analysis, and other important aspects of bulk systems. This work explored FNET measurements and utilized them for different applications and power system analysis. An island system was built and validated with FNET measurements to study the stability of the OTEC integration. FNET measurements were also used to validate a large system model like the U.S. Eastern Interconnection. It tries to match the simulation result and frequency measurement of a real event by adjusting the simulation model. The system model is tuned with the combination of different impact factors for different confirmed actual events, and some general rules and specific tuning quantities were concluded from the model validation process. This work also investigated the behavior of the power system frequency during large-scale, synchronous societal events, like the World Cup, Super Bowl and Royal Wedding. It is apparent that large groups of people engaging in the same event at roughly the same time can have significant impacts on the power grid frequency. The systematic analysis of the accumulating and statistical FNET frequency data presents an incisive point of view on the power grid frequency behavior during such events. To better understanding of system events recorded by FNET, a visualization tool was developed to visualize major events that occurred in the North American power grid. The measurement plot combined with the geographical contour map provides intuitive visualization of the event. Finally, the EI system was simplified and clustered into four groups based on FNET measurements and simulation results of generator trip cases. The generation and load capacity of each cluster was calculated based on the clustering result and simulation model, and a flow diagram of this simplified EI system was demonstrated with clusters and power flow between them.
3

Modal Analysis Techniques in Wide-Area Frequency Monitoring Systems

Baldwin, Mark W. 11 April 2008 (has links)
The advent of synchronized wide-area frequency measurements obtained from frequency disturbance recorders and phasor measurement units has presented the power industry with special opportunities to study power system dynamics. I propose the use of wide-area frequency measurements in identifying system disturbances based on power system post-event modal properties. In this work, power system dynamics are examined from an internal system energy viewpoint. Since an electric power system is composed of coupled rotating machines (large generators) which have air gap magnetic fields that are essentially static, or quasi-static, the power system may be modeled as a system with energy stored in quasi-static magnetic fields. The magnetic fields in the machines do change with time but may be modeled as static as far as wave propagation is concerned. The dynamic model that I develop treats this magnetic energy specifically as potential energy. Each rotating machine also contains an inertia due to the mass and motion of its rotor train and so each machine contains a rotational kinetic energy. Thus the internal system energy for a power system dynamic model may be considered to be contained in potential (magnetic) and kinetic (rotating mass) energies. This notion of internal energy lends itself to the use of a state-space model where each system state is associated with either a kinetic energy or a potential energy. An n-machine system would have a total of 2n states and would thus be a 2n-th order system. For many power system disturbances, I postulate that a linearized version of this model may be used to examine system natural response in terms of frequency and phasor measurements. The disturbances that I will investigate include generator and line outages. For any particular outage, the power system exhibits a very specific natural response in terms of its kinetic and potential energies. Kinetic energy in the system is directly related to each specific machine's rotational speed. I propose that the kinetic energy corresponds directly with bus frequencies through a linear transformation. Likewise magnetic field energy in each machine corresponds directly with a torque angle. The potential energy in the system thus corresponds directly with bus angles through a linear transformation. The primary focus of this work is on frequency deviation modal characteristics – specifically damped oscillation frequencies, mode shapes, and damping ratios. This work presents how specific disturbances on a power system will lead to specific oscillation frequencies in the deviation quantities and that these oscillation frequencies may be used to identify the disturbance. The idea of disturbance identification stems out of previous work done in locating disturbances by using a distributed parameter (DP) model of an electric power system. This DP model, which assumes a wave-like motion of frequency and phase quantities, was used to locate disturbances via a triangulation method. This present work, instead of using a DP model of the power system, assumes lumped parameters and focuses on disturbance identification strictly via modal characteristics – particularly oscillation frequency in the frequency deviations. This model is not concerned with geographic location but focuses on system topology, loading, and machine mass as lumped parameters. Advantages of disturbance identification include mainly reliability enhancements but can also be used in marketing applications. The state-space model used to realize this theory is verified via simulation using small, "academic" systems which should prove useful in classroom settings. Additionally the model is verified on a larger test system in order prove its validity and potential usefulness on large power systems. / Ph. D.
4

Study of Global Power System Frequency Behavior Based on Simulations and FNET Measurements

Tsai, Shu-Jen Steven 22 July 2005 (has links)
A global view of power system's frequency opens up a new window to the "world" of large system's dynamics. With the aid of global positioning system (GPS), measurements from different locations can be time-synchronized; therefore, a system-wide observation and analysis would be possible. As part of the U.S. nation-wide power frequency monitoring network project (FNET), the first part of the study focuses on utilizing system simulation as a tool to assess the frequency measurement accuracy needed to observe frequency oscillations from events such as remote generation drops in three U.S. power systems. Electromechanical wave propagation phenomena during system disturbances, such as generation trip, load rejection and line opening, have been observed and discussed. Further uniform system models are developed to investigate the detailed behaviors of wave propagation. Visualization tool is developed to help to view frequency behavior simulations. Frequency replay from simulation data provides some insights of how these frequency electromechanical waves propagate when major events occur. The speeds of electromechanical wave propagation in different areas of the U.S. systems, as well as the uniform models were estimated and their characteristics were discussed. Theoretical derivation between the generator's mechanical powers and bus frequencies is provided and the delayed frequency response is illustrated. Field-measured frequency data from FNET are also examined. Outlier removal and wavelet-based denoising signal processing techniques are applied to filter out spikes and noises from measured frequency data. System's frequency statistics of three major U.S. power grids are investigated. Comparison between the data from phasor measurement unit (PMU) at a high voltage substation and from FNET taken from 110 V outlets at distribution level illustrates the close tracking between the two. Several generator trip events in the Eastern Interconnection System and the Western Electricity Coordinating Council system are recorded and the frequency patterns are analyzed. Our trigger program can detect noticeable frequency drop or rise and sample results are shown in a 13 month period. In addition to transient states' observation, the quasi-steady-state, such as oscillations, can also be observed by FNET. Several potential applications of FNET in the areas of monitoring & analysis, system control, model validation, and others are discussed. Some applications of FNET are still beyond our imagination. / Ph. D.
5

Frequency Monitoring Network (FNET) Algorithm Improvements and Application Development

Xia, Tao 22 January 2010 (has links)
The Internet Based real-time GPS synchronized wide-area Frequency Monitoring Network (FNET) is an extremely low cost and quickly deployable wide-area frequency measurement system with high dynamic accuracy which consists of Frequency Disturbance Recorder (FDR) distributed to more than 100 places around North America and an Information Management System situated at Virginia Tech. Since its first FDR deployment in 2003, the FNET system has been proved to be able to reliably receive phasor data accurately measured at and instantaneously sent via the Internet from different locations of interest, and efficiently run the analyzing program to detect and record significant system disturbances and subsequently estimate the location of disturbance center, namely the event location, in the electric grid based on the information gathered. The excellent performance of the FNET system so far has made power grid situation awareness and monitoring based on distribution level frequency measurements a reality, and thus advances our understanding of power system dynamics to a higher level and in a broader dimensionality. Chapter 1 and Chapter 2 of this dissertation briefly introduce the genesis and the architecture of the FNET system, followed by a summary of its concrete implementations. Chapter 3 and Chapter 4 outline FNET frequency estimation algorithm and phase angle estimation algorithm, including their attributes and the new methodologies to enhance them. In Chapter 5, the report discusses the algorithms developed at FNET to detect the frequency disturbance and estimate the disturbance location by the triangulation procedure using real-time frequency data and geographic topology of the FNET units in the power grid where the disturbance occurs. Then, the dissertation proceeds to introduce the FNET angle-based power system oscillation detection and present some research about Matrix Pencil Modal Analysis of FNET phase angle oscillation data in the following two chapters. Lastly, the content of this report is summarized and the future work envisioned in Chapter 8. / Ph. D.
6

Power Systems Analysis in the Power-Angle Domain

Arana, Andrew Jex 23 December 2009 (has links)
The idea of performing power systems dynamic analysis in the power-angle domain has been hinted at by previous researchers, but this may be the first published document to develop detailed techniques by which entire power systems can be represented and solved in the power-angle domain. With the widespread deployment of phasor measurement units and frequency data recorders the industry is looking for more real-time analytical tools to turn real-time wide-area measurements into useful information. Applications based on power-angle domain analysis are simple enough that they may be used online. Power-angle domain analysis is similar to DC load-flow techniques in that a flat voltage profile is used and it is assumed that real power and voltage angle are completely decoupled from reactive power and voltage magnitude. The linearized equations for the dynamics of generators and loads are included in the model, which allows the electromechanical response to be solved using conventional circuit analysis techniques. The effect of generation trips, load switching, and line switching can be quickly approximated with nodal analysis or mesh analysis in the power-angle domain. The analysis techniques developed here are not intended to be as accurate as time-domain simulation, but they are simpler and fast enough to be put online, and they also provide a better analytical insight into the system. Power-angle domain analysis enables applications that are not readily available with conventional techniques, such as the estimation of electromechanical propagation delays based on system parameters, the formulation of electromechanical equivalents, modal analysis, stability analysis, and event location and identification based on a small number of angle or frequency measurements. Fault studies and contingency analysis are typically performed with detailed time-domain simulations, where the electromechanical response of the system is a function of every machine in the interconnection and the lines connecting them. All of this information is rarely known for the entire system for each operating condition; as a result, for many applications it may be more suitable to compute an approximation of the system response based on the current operating state of only the major lines and generators. Power-angle domain analysis is adept at performing such approximations. / Ph. D.
7

Printed Circuit Board Design for Frequency Disturbance Recorder

Wang, Lei 19 January 2006 (has links)
The FDR (Frequency Disturbance Recorder) is a data acquisition device for the power system. The device is portable and can be used with any residential wall outlet for frequency data collection. Furthermore, the FDR transmits calculated frequency data to the web for access by authorized users via Ethernet connection. As a result, Virginia Tech implemented Frequency Monitoring Network (FNET) with these FDR devices. FNET is a collection of identical FDRs placed in different measurement sites to allow for data integration and comparison. Frequency is an important factor for power system control and stabilization. With funding and support provided by ABB, TVA and NSF the FDRs are placed strategically all over the United States for frequency analysis, power system protection and monitoring. The purpose of this study is to refine the current FDR hardware design and establish a new design that will physically fit all the components on one Printed Circuit Board (PCB). At the same time, the software that is to be implemented on the new board is to be kept similar if not the same as that of the current design. The current FDR uses the Axiom CME555 development board and it is interfaced to the external devices through its communication ports. Even through the CME555 board is able to meet the demands of the basic FDR operations, there are still several problems associated with this design. This paper will address some of those hardware problems, as well as propose a new board design that is specifically aimed for operations of FDR. / Master of Science
8

Conditioning of FNET Data and Triangulation of Generator Trips in the Eastern Interconnected System

Gardner, Robert Matthew 18 August 2005 (has links)
Using data from the frequency disturbance recorders (FDRs) that comprise the nation-wide frequency monitoring network known as FNET, disturbances in the eastern interconnected system (EI) have been monitored and recorded over the past several years. Analysis of this and other data by a wide variety of research scientists and engineers has rendered the idea that frequency disturbances from generator trips, transmission line trips, load trips, and other events, travel with finite speed as electromechanical waves throughout any power system (in this case the EI). Using FNET data as a tool, it is possible to measure and output the arrival times of these disturbance waves with a time resolution of 100 ms. To observe with certainty the arrival time of the frequency disturbance waves, field data collected by the FDRs must first be conditioned in a robust manner. The current method that uses the moving mean of raw FDR data is analyzed and two computationally efficient robust methods are suggested in this report. These new methods that rely on robust statistics are more resistant to the effect of outliers contained within the raw FDR data. Furthermore, like the moving mean, these methods smooth the raw data without removing the general trend. Having recorded and conditioned the FDR data, three conventional triangulation techniques taken from the field of seismology are proposed and analyzed. This study reconfirms the fact that the EI is not a medium of continuous elasticity though which the frequency perturbations travel but rather a discontinuous patchwork of varying elasticities. Within this report, nine generator trip events are analyzed and the aforementioned triangulation methods are applied. The advantages and disadvantages of each method are discussed. To conclude, axioms of future research are proposed and delineated. / Master of Science
9

Next Generation Design of a Frequency Data Recorder Using Field Programmable Gate Arrays

Billian, Bruce 25 September 2006 (has links)
The Frequency Disturbance Recorder (FDR) is a specialized data acquisition device designed to monitor fluctuations in the overall power system. The device is designed such that it can be attached by way of a standard wall power outlet to the power system. These devices then transmit their calculated frequency data through the public internet to a centralized data management and storage server. By distributing a number of these identical systems throughout the three major North American power systems, Virginia Tech has created a Frequency Monitoring Network (FNET). The FNET is composed of these distributed FDRs as well as an Information Management Server (IMS). Since frequency information can be used in many areas of power system analysis, operation and control, there are a great number of end uses for the information provided by the FNET system. The data provides researchers and other users with the information to make frequency analyses and comparisons for the overall power system. Prior to the end of 2004, the FNET system was made a reality, and a number of FDRs were placed strategically throughout the United States. The purpose of this thesis is to present the elements of a new generation of FDR hardware design. These elements will enable the design to be more flexible and to lower reliance on some vendor specific components. Additionally, these enhancements will offload most of the computational processing required of the system to a commodity PC rather than an embedded system solution that is costly in both development time and financial cost. These goals will be accomplished by using a Field Programmable Gate Array (FPGA), a commodity off-the-shelf personal computer, and a new overall system design. / Master of Science
10

Power Systems Frequency Dynamic Monitoring System Design and Applications

Zhong, Zhian 25 August 2005 (has links)
Recent large-scale blackouts revealed that power systems around the world are far from the stability and reliability requirement as they suppose to be. The post-event analysis clarifies that one major reason of the interconnection blackout is lack of wide area information. Frequency dynamics is one of the most important parameters of an electrical power system. In order to understand power system dynamics effectively, accurately measured wide-area frequency is needed. The idea of building an Internet based real-time GPS synchronized wide area Frequency Monitoring Network (FNET) was proposed to provide the imperative dynamic information for the large-scale power grids and the implementation of FNET has made the synchronized observations of the entire US power network possible for the first time. The FNET system consists of Frequency Disturbance Recorders (FDR), which work as the sensor devices to measure the real-time frequency at 110V single-phase power outlets, and an Information Management System (IMS) to work as a central server to process the frequency data. The device comparison between FDR and commercial PMU (Phasor Measurement Unit) demonstrate the advantage of FNET. The web visualization tools make the frequency data available for the authorized users to browse through Internet. The research work addresses some preliminary observations and analyses with the field-measured frequency information from FNET. The original algorithms based on the frequency response characteristic are designed to process event detection, localization and unbalanced power estimation during frequency disturbances. The analysis of historical cases illustrate that these algorithms can be employed in real-time level to provide early alarm of abnormal frequency change to the system operator. The further application is to develop an adaptive under frequency load shedding scheme with the processed information feed in to prevent further frequency decline in power systems after disturbances causing dangerous imbalance between the load and generation. / Ph. D.

Page generated in 0.0253 seconds