• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Causes of Southern Hemisphere climate variability in the early 20th century

Connolly, Charlotte J. January 2020 (has links)
No description available.
2

Transport de vapeur d’eau vers les hautes latitudes : mécanismes et variabilité d’après réanalyses et radiosondages / Water vapour transport to the high latitudes : mechanisms and variability from reanalyses and radiosoundings

Dufour, Ambroise 24 March 2016 (has links)
La vapeur d’eau convergeant vers les régions polaires se condense en nuages quiretiennent la chaleur terrestre. Ces nuages donnent lieu à des précipitations, qui adoucissent les océans polaires et épaississent les calottes de glace. Sans changement des vents, le transport de vapeur d’eau est appelé à augmenter dans un climat plus chaud et donc les chutes de neige sur les calottes aussi. Le surplus d’humidité risque cependant de rétroagir sur le réchauffement de surface.Afin de contraindre les projections futures, cette thèse se propose d’évaluer la variabilité actuelle du cycle de l’eau dans les hautes latitudes. Elle s’appuie sur sept réanalyses globales et des observations par radiosondages allant de 1979 à 2013. Leurs biais intrinsèques et les approximations de calcul n’entament pas les conclusions principales de cette étude.En Arctique, mise à part une légère surestimation, le transport d’humidité dans les réanalyses est remarquablement proche des observations, aussi bien dans le temps que dans l’espace. Dans toutes les réanalyses, les vents dominants n’advectent qu’une fraction de la vapeur d’eau, de 6 à 11%, au profit des perturbations. D’après la plupart des sources, évaporation, précipitation et humidité atmosphérique augmentent en accord avec l’élévation des températures. Toutefois, les flux de vapeur d’eau ne suivent pas la loi de Clausius-Clapeyron car humidité et vents sont moins corrélés, notamment près de la surface.En Antarctique, le manque d’observations se fait sentir : la convergence de vapeur d’eau sur la calotte varie de 117 à 156 mm par an selon les réanalyses. Le transport côtier, très variable dans l’espace, résulte de l’alternance entre vents catabatiques et passage de perturbations. Sur la côte, les radiosondages signalent une augmentation significative des flux d’humidité vers le Sud. À l’échelle du continent en revanche, les réanalyses ne font étatde quasiment aucune tendance.Enfin, le rôle des phénomènes météorologiques d’échelle courte est évalué de nouveau, selon plusieurs méthodes. En particulier, les cyclones extratropicaux laissent dans les flux de vapeur d’eau une empreinte caractéristique qui peut être détectée et quantifiée. / The water vapour converging to the polar regions condenses into heat-trappingclouds and eventually precipitates, freshening the polar oceans and thickening the ice-sheets. Modulo circulation changes, the moisture transport is expected to increase in a warmer climate. While the extra precipitation could dampen the ice sheets’ contribution to sea level rise, the surplus of moisture could also feed back on the surface warming. However, the present variability of the polar moisture budgets must be known precisely before they can be projected with confidence into the future.This study examines the atmospheric water cycle of both the Arctic and the Antarctic in seven global reanalyses and in radiosonde observations covering the 1979-2013 period. The impacts of known model and assimilation flaws and of the various numerical approximations were evaluated and proven to be limited, at least for the moisture flux variable and the more recent reanalyses.In the Arctic, aside from a slight overestimation, the northward fluxes in reanalyses exhibit a remarkable agreement with the radiosoundings in terms of spatial and temporal patterns. In all reanalyses, transient eddies provide the bulk of the mid-latitude moisture imports – 89-94% at 70◦ N. In most datasets, evaporation, precipitation and precipitable water increase in line with what is expected from a warming signal. However fluxes do not scale with the Clausius-Clapeyron relation because the increasing humidity is not correlatedwith the meridional wind, particularly near the surface.The representations of the Antarctic atmospheric water cycle in reanalyses suffer from the scarcity of observations : the moisture convergence estimations vary from 117 to 156 mm per year. On the coast, the mean moisture flux results from the interplay between transient eddies and katabatic winds, which are particularly sensitive to the orography. The coastalradiosonde sites report significant increases of the southward moisture fluxes but otherwise there are practically no trends in reanalyses on a continental scale.Finally, the share of transient eddies in moisture advection is qualified using alternate methods. In particular, extratropical cyclones leave a characteristic imprint on the transport field, which can be detected and quantified.
3

Projevy chaotického chování v pozorovaných a simulovaných řadách klimatických veličin / Manifestation of chaotic behavior in observed and simulated series of climatic variables

Skořepa, Jan January 2014 (has links)
Diplomová práce se věnuje analýze chaotického chování v řadách (pseudo)pozorovaných a simulovaných klimatických veličin. Nejprve objasňuji ně- které základní teoretické pojmy související s dynamickými systémy. Potom se zabývám zp·soby rekonstrukce fázového prostoru a uvedu metody odhadu kore- lační dimenze a největšího Ljapunovova exponentu. V praktické části se zabývám pr·měrnou denní teplotou z reanalýz ERA-40 a reanalýzami NCEP/NCAR v tlakových hladinách 850 a 500 hPa z let 1960-2000. Nejprve zkoumám podrobně jednu vybranou řadu. Používám např. metodu falešných soused· a určuji míru vzájemné informace. Zjiš'uji, že korelační dimenze nenabývá konkrétní hodnotu. Pro analýzu celých tlakových hladin vyvíjím program, který počítá divergenci blízkých trajektorií, což je postup používaný při výpočtu největšího Ljapunovo- va exponentu. Tento program postupně aplikuji na oblasti velikosti 20◦ × 30◦ kterými je pokryta celá zeměkoule. Postupně ukazuji a srovnávám výsledky pro reanalýzy v obou tlakových hladinách s ročním chodem a odečteným ročním cho- dem. Tuto metodu aplikuji na výstupy globálních klimatických model· HadCM3 a MPI-ESM-MR v hladině 500 hPa. Podobnou analýzu ještě uskutečňuji u jed- nodimenzionálních řad teploty u reanalýz a u model·. Výsledky opět vizuálně srovnávám. 1
4

Využití klasifikací atmosférické cirkulace v interpretaci výstupů z klimatických modelů / The application of atmospheric circulation classifications in the interpretation of climate model outputs

Stryhal, Jan January 2018 (has links)
The application of atmospheric circulation classifications in the interpretation of climate model outputs Mgr. Jan Stryhal Automated (computer-assisted) classifications of atmospheric circulation patterns (circulation classifications, for short) constitute a tool widely used in synoptic and dynamic climatology to study atmospheric circulation and its link to various atmospheric, environmental, and societal phenomena. The application of circulation classifications to output of dynamical models of the atmosphere has developed considerably since the pioneering studies about three decades ago, reflecting rapid development in statistics, computing technology, and-naturally-climatological research, increasingly more and more dependent on simulations of the atmosphere, facing the paradigm of anthropogenic climate change. An uncoordinated use of various statistical approaches to analyzing output of global climate models (GCM) or their various ensembles, and an arbitrary selection of circulation variables, spatial and temporal domains, and reference datasets, have contributed to a need for a comparative study, which would shed some light on the sensitivity of studies dealing with an intercomparison of circulation classifications in two datasets to subjective choices. The present thesis responds to this need...
5

Dlouhodobé změny srážek v Evropě v různých zdrojích dat / Long-term precipitation changes in Europe in different data sources

Vít, Václav January 2021 (has links)
The subject of this diploma thesis is the analysis of long-term changes in precipitation in Europe over the period 1961 - 2011. Emphasis is placed on determining differences in values of trends in precipitation among selected data sources and on analyzing the spatial distribution of annual and seasonal changes in precipitation in Europe, including a discussion of possible causes of differences in these changes in individual areas. Another aim is to illustrate, describe and account for the differences in trend values among different data sources: the ECA&D station database, the interpolation network data sets E-OBS and CRU TS and two reanalyses JRA-55 and NCEP/NCAR. Depending on the amount and quality of data available for the comparison of data sets, changes in precipitation totals were described over a long-term scale in absolute and also, to a lesser degree, in relative values. The first part summarizes the scientific literature dealing with the changes in precipitation characteristics throughout the world and in Europe. There follows a description of the suitability of individual types of data sources for estimating trends in precipitation totals. Scientific articles usually describe long-term changes based on a single data source rather than using a variety of individual types of data sources....
6

Le rôle de la couverture de neige de l'Arctique dans le cycle hydrologique de hautes latitudes révélé par les simulations des modèles climatiques / Role of the Arctic snow cover in high-latitude hydrological cycle asrevealed by climate model simulations

Santolaria Otín, María 04 November 2019 (has links)
La neige est une composante essentielle du système climatique arctique. Au nord de l'Eurasie et de l'Amérique du Nord, la couverture neigeuse est présente de 7 à 10 mois par an et son extension saisonnière maximale représente plus de 40% de la surface terrestre de l'hémisphère nord. La neige affecte une variété de processus climatiques et de rétroactions aux hautes latitudes. Sa forte réflectivité et sa faible conductivité thermique ont un effet de refroidissement et modulent la rétroaction neige-albédo. Sa contribution au bilan radiatif de la Terre est comparable à celle de la banquise. De plus, en empêchant d'importantes pertes d'énergie du sol sous-jacent, la neige limite la progression de la glace et le développement du pergélisol saisonnier. Réserve d'eau naturelle, la neige joue un rôle essentiel dans le cycle hydrologique aux hautes latitudes, notamment en ce qui concerne l'évaporation et le ruissellement. La neige est l'une des composantes du système climatique présentant la plus forte variabilité. Le réchauffement de l'Arctique étant deux fois plus rapide que celui du reste du globe, la variabilité présente et future des caractéristiques de la neige est cruciale pour une meilleure compréhension des processus et des changements climatiques.Cependant, notre capacité à observer l'Arctique terrestre étant limitée, les modèles climatiques jouent un rôle clé dans notre aptitude à comprendre les processus liés à la neige. À cet égard, la représentation des rétroactions associées à la neige dans les modèles climatiques, en particulier pendant les saisons intermédiaires (lorsque la couverture neigeuse de l'Arctique présente la plus forte variabilité), est primordiale.Notre étude porte principalement sur la représentation de la neige terrestre arctique dans les modèles de circulation générale issus du projet CMIP5 (Coupled Model Intercomparison Project) au cours du printemps (mars-avril) et de l’automne (octobre-novembre) de 1979 à 2005. Les caractéristiques de la neige des modèles de circulation générale ont été validées par rapport aux mesures de neige in situ, ainsi qu’à des produits satellitaires et à des réanalyses.Nous avons constaté que les caractéristiques de la neige dans les modèles ont un biais plus marqué au printemps qu'en automne. Le cycle annuel de la couverture neigeuse est bien reproduit par les modèles. Cependant, les cycles annuels d'équivalent en eau de la neige et de sa profondeur sont largement surestimés par les modèles, notamment en Amérique du Nord. Il y a un meilleur accord entre les modèles et les observations dans la position de la marge de neige au printemps plutôt qu'en automne. Les amplitudes de variabilité interannuelle pour toutes les variables de la neige sont nettement sous-estimées par la plupart des modèles CMIP5. Pour les deux saisons, les tendances des variables de la neige dans les modèles sont principalement négatives, mais plus faibles et moins significatives que celles observées. Les distributions spatiales des tendances de la couverture neigeuse sont relativement bien reproduites par les modèles, toutefois, la distribution spatiale des tendances en équivalent-eau et en profondeur de la neige présente de fortes hétérogénéités régionales.Enfin, nous concluons que les modèles CMIP5 fournissent des informations précieuses sur les caractéristiques de la neige en Arctique terrestre, mais qu’ils présentent encore des limites. Il y a un manque d’accord entre l’ensemble des modèles sur la distribution spatiale de la neige par rapport aux observations et aux réanalyses. Ces écarts sont particulièrement marqués dans les régions où la variabilité de la neige est la plus forte. Notre objectif dans cette étude était d'identifier les circonstances dans lesquelles ces modèles reproduisent ou non les caractéristiques observées de la neige en Arctique. Nous attirons l’attention de la communauté scientifique sur la nécessité de prendre compte nos résultats pour les futures études climatiques. / Snow is a critical component of the Arctic climate system. Over Northern Eurasia and North America the duration of snow cover is 7 to 10 months per year and a maximum snow extension is over 40% of the Northern Hemisphere land each year. Snow affects a variety of high latitude climate processes and feedbacks. High reflectivity of snow and low thermal conductivity have a cooling effect and modulates the snow-albedo feedback. A contribution from terrestrial snow to the Earth’s radiation budget at the top of the atmosphere is close to that from the sea ice. Snow also prevents large energy losses from the underlying soil and notably the ice growth and the development of seasonal permafrost. Being a natural water storage, snow plays a critical role in high latitude hydrological cycle, including evaporation and run-off. Snow is also one of the most variable components of climate system. With the Arctic warming twice as fast as the globe, the present and future variability of snow characteristics are crucially important for better understanding of the processes and changes undergoing with climate. However, our capacity to observe the terrestrial Arctic is limited compared to the mid-latitudes and climate models play very important role in our ability to understand the snow-related processes especially in the context of a warming cryosphere. In this respect representation of snow-associated feedbacks in climate models, especially during the shoulder seasons (when Arctic snow cover exhibits the strongest variability) is of a special interest.The focus of this study is on the representation of the Arctic terrestrial snow in global circulation models from Coupled Model Intercomparison Project (CMIP5) ensemble during the melting (March-April) and the onset (October-November) season for the period from 1979 to 2005. Snow characteristics from the general circulation models have been validated against in situ snow measurements, different satellite-based products and reanalyses.We found that snow characteristics in models have stronger bias in spring than in autumn. The annual cycle of snow cover is well captured by models in comparison with observations, however, the annual cycles of snow water equivalent and snow depth are largely overestimated by models, especially in North America. There is better agreement between models and observations in the snow margin position in spring rather than in autumn. Magnitudes of interannual variability for all snow characteristics are significantly underestimated in most CMIP5 models compared to observations. For both seasons, trends of snow characteristics in models are primarily negative but weaker and less significant than those from observations. The patterns of snow cover trends are relatively well reproduced in models, however, the spatial distribution of trends for snow water equivalent and snow depth display strong regional heterogeneities.Finally, we have concluded CMIP5 general circulation models provides valuable information about the snow characteristics in the terrestrial Arctic, however, they have still limitations. There is a lack of agreement among the ensemble of models in the spatial distribution of snow compared to the observations and reanalysis. And these discrepancies are accentuated in regions where variability of snow is higher in areas with complex terrain such as Canada and Alaska and during the melting and the onset season. Our goal in this study was to identify where and when these models are or are not reproducing the real snow characteristics in the Arctic, thus we hope that our results should be considered when using these snow-related variables from CMIP5 historical output in future climate studies.
7

Structure de la stratification dans les gyres subtropicaux et sa variabilité décennale dans l'océan Atlantique Nord / Stratification structure in subtropical gyres and its decadal variability in the North Atlantic Ocean

Feucher, Charlène 21 November 2016 (has links)
Les gyres subtropicaux sont au coeur des changements observés au cours des dernières décennies. On y observe entre la surface et la pycnocline permanente une augmentation du contenu thermique de l’océan. La pycnocline permanente délimite un important réservoir de chaleur et joue un rôle majeur en empêchant la chaleur accumulée en surface d’atteindre les profondeurs de l’océan. La pycnocline permanente est donc d’un intérêt important dans un contexte de changement climatique. Pour la première fois et grâce au réseau de données Argo, nous avons été capables de déterminer les propriétés de la pycnocline permanente. L’objectif de cette thèse est de déterminer la structure de la pycnocline permanente et d’étudier sa variabilité au cours des dernières décennies. Une méthode de détermination objective de la pycnocline permanente a été développée. Cette méthode a d’abord été appliquée à l’océan Atlantique nord avec les données Argo puis à l’océan global. Une structure complexe de la pycnocline permanente a été mise en évidence avec de fortes différences d’un gyre à l’autre. La pycnocline permanente est la plus profonde et la plus épaisse dans le gyre subtropical nord Atlantique. Cela explique que le gyre subtropical nord Atlantique soit le plus grand réservoir de chaleur au monde. Ensuite, les relations entre la variabilité du contenu de chaleur et les propriétés de la pycnocline permanente ont été étudiées en s’appuyant sur des réanalyses océaniques. Au cours des dernières décennies, un réchauffement important de l’océan a été observé et particulièrement dans l’océan Atlantique nord. Ce réchauffement est principalement dominé par un approfondissement des isopycnes. Les déplacements verticaux des isopycnes induisent des changements dans la stratification et affectent les propriétés de la pycnocline permanente (profondeur et densité potentielle). / Subtropical gyres are central to the observed climate changes throughout the last decades. It is observed between the surface and the permanent pycnocline an intense increase in the ocean heat content. The permanent pycnocline delineates thus an important heat reservoir. The permanent pycnocline has a major role in preventing heat to reach the deep ocean and it thus of a relative importance in the context of climate change. For the first time and thanks to the development of the Argo array, we have been able to characterize the observed structure of the permanent pycnocline. The objective of this PhD thesis is to investigate the structure of the permanent pycnocline and its variability over the last decades. We developed an objective method to characterize the properties of the permanent pycnocline. This method has been first applied to the North Atlantic Ocean with Argo data and then to the global ocean. A complex structure of the permanent pycnocline emerges with strong differences from one gyre to another. The permanent pycnocline is found to be the deepest and the thickest in the North Atlantic subtropical gyre. It implies that the North Atlantic subtropical gyre is the largest heat reservoir on Earth. Then, ocean reanalyses have been used to investigate the changes in the permanent pycnocline properties in the North Atlantic subtropical gyre. Over the last decades, there is a strong warming of the upper ocean, especially in the North Atlantic subtropical gyre. The warming in the ocean is dominated by the heaving of isopycnal surfaces. This heaving strongly affects the depths of isopycnals and the stratification. This in turn affects the properties of the permanent pycnocline, especially its depth and potential density.

Page generated in 0.0555 seconds