Spelling suggestions: "subject:"recalage d'images"" "subject:"decalage d'images""
21 |
Recalage de signaux et reconnaissance de formes. Application à l'analyse des otolithes de poissons.Nasreddine, Kamal 09 November 2010 (has links) (PDF)
Une approche variationnelle robuste est proposée pour le recalage de signaux 1D puis appliquée au calcul des géodésiques de formes pour la classification. L'approche est ensuite étendue au recalage d'images de séquences de formes. Cette approche de recalage, basé-géométrie, est particulièrement bien adaptée aux images peu contrastées, pour lesquelles le recalage basé-intensité manque d'efficacité. Une étude de validation est menée sur des signaux et des images issus de la biologie et du milieu médical. La reconnaissance de formes (classification et recherche) a aussi été validée sur la base d'images MPEG-7 largement utilisée dans la littérature scientifique. L'application principale visée concerne le traitement des signaux et des images issus d'archives biologiques marines (otolithes de poissons et coquilles Saint-Jacques), qui présentent une grande variabilité inter-individuelle et où les approches de recalage sont d'un intérêt tout particulier. Les méthodes proposées ont été appliquées avec succès à l'identification de l'espèce et/ou du stock du poisson et de la coquille Saint-Jacques, à l'estimation de l'âge et de la croissance du poisson, comme aide à l'interprétation des marques de croissance et à l'établissement de modèles statistiques de formes.
|
22 |
Modèles physiologiques et statistiques du cœur guidés par imagerie médicale : application à la tétralogie de FallotMansi, Tommaso 10 September 2010 (has links) (PDF)
Les travaux de cette thèse sont consacrés à la quantification de cardiopathies, la prédiction de leur évolution et la planification de thérapies, avec pour application principale la tétralogie de Fallot, une malformation congénitale grave du cœur. L'idée sous-jacente est d'utiliser des modèles informatiques sophistiqués combinant traitement d'images, statistique et physiologie, pour assister la gestion clinique de ces patients. Dans un premier temps, nous proposons une nouvelle méthode de recalage d'images plus précise pour estimer la déformation cardiaque à partir d'images médi- cales anatomiques, où seulement le mouvement apparent du cœur est visible. L'algorithme proposé s'appuie sur la méthode dite des démons, que l'on contraint de manière rigoureuse à être élastique et incompressible grâce à une nouvelle justification de l'étape de régularisation de l'algorithme. Les expériences réalisées sur des images synthétiques et réelles ont démontré que l'ajout de ces contraintes améliore de manière significative la précision des déformations estimées. Nous étudions ensuite la croissance du cœur par une approche statistique basée sur les "courants". Une analyse en composantes principales permet d'identifier des altérations morphologiques dues à la pathologie. L'utilisation conjointe de la méthode PLS (moindres carrés partiels) et de l'analyse des corrélations canoniques permet de créer un modèle statistique moyen de croissance du cœur. L'analyse du ventricule droit de 32 patients avec tétralogie de Fallot a révélé une dilatation du ventricule, une déformation de sa base et un élargissement de son apex, caractéristiques que l'on retrouve dans la littérature clinique. Le modèle de croissance montre qu'elles apparaissent progressivement au fil du temps. Enfin, nous adaptons un modèle électromécanique du cœur pour simuler la fonction cardiaque chez des patients et tester diverses stratégies de pose de valves pulmonaires. Le modèle électromécanique simule les caractéristiques principales de la fonction cardiaque. Une fois personnalisé, le modèle est utilisé pour prédire les effets postopératoires de la pose de valves chez le patient. Le modèle a été ainsi capable de reproduire, de manière qualitative, la fonction cardiaque de deux patients. Comme attendu, la fonction simulée du ventricule droit est améliorée après pose de valves, ainsi que celle du ventricule gauche, suggérant une relation étroite entre les deux ventricules du cœur. Les méthodes de traitement d'images médicales, d'analyses statistiques et de modèles de la physiologie du cœur forment un cadre puissant pour le développe- ment d'une médecine plus personnalisée et assistée par ordinateur.
|
23 |
Modèles de minimisation d'énergies discrètes pour la cartographie cystoscopiqueWeibel, Thomas 09 July 2013 (has links) (PDF)
L'objectif de cette thèse est de faciliter le diagnostic du cancer de la vessie. Durant une cystoscopie, un endoscope est introduit dans la vessie pour explorer la paroi interne de l'organe qui est visualisée sur un écran. Cependant, le faible champ de vue de l'instrument complique le diagnostic et le suivi des lésions. Cette thèse présente des algorithmes pour la création de cartes bi- et tridimensionnelles à large champ de vue à partir de vidéo-séquences cystoscopiques. En utilisant les avancées récentes dans le domaine de la minimisation d'énergies discrètes, nous proposons des fonctions coût indépendantes des transformations géométriques requises pour recaler de façon robuste et précise des paires d'images avec un faible recouvrement spatial. Ces transformations sont requises pour construire des cartes lorsque des trajectoires d'images se croisent ou se superposent. Nos algorithmes détectent automatiquement de telles trajectoires et réalisent une correction globale de la position des images dans la carte. Finalement, un algorithme de minimisation d'énergie compense les faibles discontinuités de textures restantes et atténue les fortes variations d'illuminations de la scène. Ainsi, les cartes texturées sont uniquement construites avec les meilleures informations (couleurs et textures) pouvant être extraites des données redondantes des vidéo-séquences. Les algorithmes sont évalués quantitativement et qualitativement avec des fantômes réalistes et des données cliniques. Ces tests mettent en lumière la robustesse et la précision de nos algorithmes. La cohérence visuelle des cartes obtenues dépasse celles des méthodes de cartographie de la vessie de la littérature.
|
24 |
Segmentation et recalage d'images échographiques par utilisation de connaissances physiologiques et morphologiquesIonescu, Gelu 04 December 1998 (has links) (PDF)
L'échographie est un outil qui s'impose de plus en plus dans le domaine des Gestes Médico-Chirurgicaux Assistés par Ordinateur (GMCAO). Les médecins et les chirurgiens disposent en conséquence d'un excellent outil de travail qui les aide à planifier et surtout à réaliser des interventions chirurgicales. Pour cela, ils ont besoin également de logiciels automatiques et faciles à utiliser fondés sur d'algorithmes robustes, précis et rapides. L'objectif majeur de cette thèse est d'exploiter la dualité segmentation- recalage pour extraire de l'information pertinente des images échographiques. Cette information permettra ensuite le recalage automatique et précis des structures anatomiques contenues dans le modèle pré-opératoire issu de l'imagerie TDM/IRM et des données per-opératoires contenues dans les images échographique. Le résultat du recalage sera utilisé ultérieurement pour prêter assistance à un outil guidé par ordinateur. Dans une première partie, nous proposons des méthodes de filtrage, segmentation et calibrage des images échographiques. Un intérêt majeur a été accordé au développement des algorithmes de traitement robustes, précis et rapides. Une deuxième partie a été dédiée à la dualité segmentation-recalage et à la compensation des déformations élastiques des tissus mous. Des algorithmes de segmentation de haut niveau des images échographiques ont été développés. Ils se fondent sur la fusion des résultats fournis par la segmentation de bas niveau, des connaissances anatomiques a priori et de l'information apportée par le modèle pré-opératoire. La troisième partie est réservée à la description détaillée des applications et à l'interprétation des résultats. Les applications traitées sont : l'orthopédie du rachis - visée pédiculaire, l'orthopédie du bassin - visée sacro-iliaque, la radiothérapie de la prostate et la ponction d'un épanchement péricardique. Finalement, les développements futurs de cette approche sont discutés.
|
25 |
Inspection automatisée d’assemblages mécaniques aéronautiques par vision artificielle : une approche exploitant le modèle CAO / Automated inspection of mechanical parts by computer vision : an approach based on CAD modelViana do Espírito Santo, Ilísio 12 December 2016 (has links)
Les travaux présentés dans ce manuscrit s’inscrivent dans le contexte de l’inspection automatisée d’assemblages mécaniques aéronautiques par vision artificielle. Il s’agit de décider si l’assemblage mécanique a été correctement réalisé (assemblage conforme). Les travaux ont été menés dans le cadre de deux projets industriels. Le projet CAAMVis d’une part, dans lequel le capteur d’inspection est constitué d’une double tête stéréoscopique portée par un robot, le projet Lynx© d’autre part, dans lequel le capteur d’inspection est une caméra Pan/Tilt/Zoom (vision monoculaire). Ces deux projets ont pour point commun la volonté d’exploiter au mieux le modèle CAO de l’assemblage (qui fournit l’état de référence souhaité) dans la tâche d’inspection qui est basée sur l’analyse de l’image ou des images 2D fournies par le capteur. La méthode développée consiste à comparer une image 2D acquise par le capteur (désignée par « image réelle ») avec une image 2D synthétique, générée à partir du modèle CAO. Les images réelles et synthétiques sont segmentées puis décomposées en un ensemble de primitives 2D. Ces primitives sont ensuite appariées, en exploitant des concepts de la théorie de graphes, notamment l’utilisation d’un graphe biparti pour s’assurer du respect de la contrainte d’unicité dans le processus d’appariement. Le résultat de l’appariement permet de statuer sur la conformité ou la non-conformité de l’assemblage. L’approche proposée a été validée à la fois sur des données de simulation et sur des données réelles acquises dans le cadre des projets sus-cités. / The work presented in this manuscript deals with automated inspection of aeronautical mechanical parts using computer vision. The goal is to decide whether a mechanical assembly has been assembled correctly i.e. if it is compliant with the specifications. This work was conducted within two industrial projects. On one hand the CAAMVis project, in which the inspection sensor consists of a dual stereoscopic head (stereovision) carried by a robot, on the other hand the Lynx© project, in which the inspection sensor is a single Pan/Tilt/Zoom camera (monocular vision). These two projects share the common objective of exploiting as much as possible the CAD model of the assembly (which provides the desired reference state) in the inspection task which is based on the analysis of the 2D images provided by the sensor. The proposed method consists in comparing a 2D image acquired by the sensor (referred to as "real image") with a synthetic 2D image generated from the CAD model. The real and synthetic images are segmented and then decomposed into a set of 2D primitives. These primitives are then matched by exploiting concepts from the graph theory, namely the use of a bipartite graph to guarantee the respect of the uniqueness constraint required in such a matching process. The matching result allows to decide whether the assembly has been assembled correctly or not. The proposed approach was validated on both simulation data and real data acquired within the above-mentioned projects.
|
26 |
Contributions au recalage et à la reconstruction 3D de surfaces déformablesGay-Bellile, Vincent 10 November 2008 (has links) (PDF)
Cette thèse porte sur le développement d'outils permettant le recalage d'images d'une surface déformable et la reconstruction tridimensionnelle de surfaces déformables à partir d'images prises par une seule caméra. Les surfaces que nous souhaitons traiter sont typiquement un visage ou une feuille de papier. Ces problématiques sont mal posées lorsque seule l'information présente dans les images est exploitée. Des informations a priori sur les déformations physiquement admissibles de la surface observée doivent être définies. Elles diffèrent en fonction du problème étudié. Par exemple, pour une feuille de papier, la courbure Gaussienne évaluée en chacun de ces points est nulle, cette propriété n'est pas valide pour un visage. Les applications visées sont l'insertion réaliste de logo 2D, de texte et aussi d'objets virtuels 3D dans des vidéos présentant une surface déformable. La première partie de cette thèse est consacrée au recalage d'images par modèles déformables. Après avoir brièvement introduit les notions de base sur les fonctions de déformation et sur leur estimation à partir de données images, nous donnons deux contributions. La première est un algorithme de recalage d'images d'une surface déformable, qui est efficace en terme de temps de calcul. Nous proposons une paramétrisation par primitives des fonctions de déformation permettant alors leur estimation par des algorithmes compositionnels habituellement réservés aux transformations formant un groupe. La deuxième contribution est la modélisation explicite des auto-occultations, en imposant la contraction de la fonction de déformation le long de la frontière d'auto-occultation. La deuxième partie de cette thèse aborde le problème de la reconstruction tridimensionnelle monoculaire de surfaces déformables. Nous nous basons sur le modèle de faible rang : les déformations sont approximées par une combinaison linéaire de modes de déformation inconnus. Nous supposons que ces derniers sont ordonnés par importance en terme d'amplitude de déformation capturée dans les images. Il en résulte une estimation hiérarchique des modes, facilitant l'emploi d'un modèle de caméra perspectif, la sélection automatique du nombre de modes et réduisant certaines ambiguïtés inhérentes au modèle. Nous explorons finalement la capture des déformations d'une surface peu texturée à partir de données issues d'un capteur 3D. L'information présente au niveau des contours de la surface est notamment utilisée. Nous avons implanté les différentes contributions décrites ci-dessous. Elles sont testées et comparées à l'état de l'art sur des données réelles et synthétiques. Les résultats sont présentés tout au long du tapuscrit.
|
27 |
Modèles de minimisation d'énergies discrètes pour la cartographie cystoscopique / Discrete energy minimization models for cystoscopic cartographyWeibel, Thomas 09 July 2013 (has links)
L'objectif de cette thèse est de faciliter le diagnostic du cancer de la vessie. Durant une cystoscopie, un endoscope est introduit dans la vessie pour explorer la paroi interne de l'organe qui est visualisée sur un écran. Cependant, le faible champ de vue de l'instrument complique le diagnostic et le suivi des lésions. Cette thèse présente des algorithmes pour la création de cartes bi- et tridimensionnelles à large champ de vue à partir de vidéo-séquences cystoscopiques. En utilisant les avancées récentes dans le domaine de la minimisation d'énergies discrètes, nous proposons des fonctions coût indépendantes des transformations géométriques requises pour recaler de façon robuste et précise des paires d'images avec un faible recouvrement spatial. Ces transformations sont requises pour construire des cartes lorsque des trajectoires d'images se croisent ou se superposent. Nos algorithmes détectent automatiquement de telles trajectoires et réalisent une correction globale de la position des images dans la carte. Finalement, un algorithme de minimisation d'énergie compense les faibles discontinuités de textures restantes et atténue les fortes variations d'illuminations de la scène. Ainsi, les cartes texturées sont uniquement construites avec les meilleures informations (couleurs et textures) pouvant être extraites des données redondantes des vidéo-séquences. Les algorithmes sont évalués quantitativement et qualitativement avec des fantômes réalistes et des données cliniques. Ces tests mettent en lumière la robustesse et la précision de nos algorithmes. La cohérence visuelle des cartes obtenues dépassent celles des méthodes de cartographie de la vessie de la littérature / The aim of this thesis is to facilitate bladder cancer diagnosis. The reference clinical examination is cystoscopy, where an endoscope, inserted into the bladder, allows to visually explore the organ's internal walls on a monitor. The main restriction is the small field of view (FOV) of the instrument, which complicates lesion diagnosis, follow-up and treatment traceability.In this thesis, we propose robust and accurate algorithms to create two- and three-dimensional large FOV maps from cystoscopic video-sequences. Based on recent advances in the field of discrete energy minimization, we propose transformation-invariant cost functions, which allow to robustly register image pairs, related by large viewpoint changes, with sub-pixel accuracy. The transformations linking such image pairs, which current state-of-the-art bladder image registration techniques are unable to robustly estimate, are required to construct maps with several overlapping image trajectories. We detect such overlapping trajectories automatically and perform non-linear global map correction. Finally, the proposed energy minimization based map compositing algorithm compensates small texture misalignments and attenuates strong exposure differences. The obtained textured maps are composed by a maximum of information/quality available from the redundant data of the video-sequence. We evaluate the proposed methods both quantitatively and qualitatively on realistic phantom and clinical data sets. The results demonstrate the robustness of the algorithms, and the obtained maps outperform state-of-the-art approaches in registration accuracy and global map coherence
|
28 |
SYSTEME DE SUIVI BASE SUR L'ECHOGRAPHIE 3D POUR L'ASSURANCE DE LA QUALITE DE LA DISTRIBUTION DES BIOPSIES DE LA PROSTATE ET LE GUIDAGE DU GESTE.Baumann, Michael 26 May 2008 (has links) (PDF)
A l'heure actuelle, la procédure clinique standard de prélèvement de biopsies de la prostate est effectuée sous contrôle échographique 2D en utilisant un protocole systématique. Il est difficile pour le clinicien de localiser les cibles de biopsie avec précision, et il est impossible de connaître la position exacte des tissus échantillonnés après l'intervention. Dans ce mémoire, nous proposons une méthode permettant de localiser la position des tissus prélevés avec une précision millimétrique par rapport à une image 3D de la prostate de référence. Elle combine des techniques de recalage rigide et élastique basées sur les intensités (recalage iconique) avec des modèles a priori des contraintes biomécaniques. Ce travail permet la mise en œuvre d'applications telles que la validation postopératoire de la distribution des biopsies et l'établissement de cartographies précises des tissus cancéreux, ce qui permettrait éventuellement un traitement localisé du cancer de la prostate. L'approche proposée permet également de guider le clinicien vers des cibles définies sur l'image de référence, provenant par exemple d'une autre modalité d'imagerie telle que l'IRM ou le SpectroIRM.
|
29 |
Méthodes mathématiques et numériques pour la modélisation des déformations et l'analyse de texture. Applications en imagerie médicale / Mathematical and numerical methods for the modeling of deformations and image texture analysis. Applications in medical imagingChesseboeuf, Clément 23 November 2017 (has links)
Nous décrivons une procédure numérique pour le recalage d'IRM cérébrales 3D. Le problème d'appariement est abordé à travers la distinction usuelle entre le modèle de déformation et le critère d'appariement. Le modèle de déformation est celui de l'anatomie computationnelle, fondé sur un groupe de difféomorphismes engendrés en intégrant des champs de vecteurs. Le décalage entre les images est évalué en comparant les lignes de niveau de ces images, représentées par un courant différentiel dans le dual d'un espace de champs de vecteurs. Le critère d'appariement obtenu est non local et rapide à calculer. On se place dans l'ensemble des difféomorphismes pour rechercher une déformation reliant les deux images. Pour cela, on minimise le critère en suivant le principe de l'algorithme sous-optimal. L'efficacité de l'algorithme est renforcée par une description eulérienne et périodique du mouvement. L'algorithme est appliqué pour le recalage d'images IRM cérébrale 3d, la procédure numérique menant à ces résultats est intégralement décrite. Nos travaux concernent aussi l'analyse des propriétés de l'algorithme. Pour cela, nous avons simplifié l'équation représentant l'évolution de l'image et étudié l'équation simplifiée en utilisant la théorie des solutions de viscosité. Nous étudions aussi le problème de détection de rupture dans la variance d'un signal aléatoire gaussien. La spécificité de notre modèle vient du cadre infill, ce qui signifie que la distribution des données dépend de la taille de l'échantillon. L'estimateur de l'instant de rupture est défini comme le point maximisant une fonction de contraste. Nous étudions la convergence de cette fonction et ensuite la convergence de l'estimateur associé. L'application la plus directe concerne l'estimation de changement dans le paramètre de Hurst d'un mouvement brownien fractionnaire. L'estimateur dépend d'un paramètre p > 0 et nos résultats montrent qu'il peut être intéressant de choisir p < 2. / We present a numerical procedure for the matching of 3D MRI. The problem of image matching is addressed through the usual distinction between the deformation model and the matching criterion. The deformation model is based on the theory of computational anatomy and the set of deformations is a group of diffeomorphisms generated by integrating vector fields. The discrepancy between the two images is evaluated through comparisons of level lines represented by a differential current in the dual of a space of vector fields. This representation leads to a quickly computable non-local criterion. Then, the optimisation method is based on the minimization of the criterion following the idea of the so-called sub-optimal algorithm. We take advantage of the eulerian and periodical description of the algorithm to get an efficient numerical procedure. This algorithm can be used to deal with 3d MR images and numerical experiences are presented. In an other part, we focus on theoretical properties of the algorithm. We begin by simplifying the equation representing the evolution of the deformed image and we use the theory of viscosity solutions to study the simplified equation. The second issue we are interested in is the change-point estimation for a gaussian sequence with change in the variance parameter. The main feature of our model is that we work with infill data and the nature of the data can evolve jointly with the size of the sample. The usual approach suggests to introduce a contrast function and using the point of its maximum as a change-point estimator. We first get an information about the asymptotic fluctuations of the contrast function around its mean function. Then, we focus on the change-point estimator and more precisely on the convergence of this estimator. The most direct application concerns the detection of change in the Hurst parameter of a fractional brownian motion. The estimator depends on a parameter p > 0, generalizing the usual choice p = 2. We present some results illustrating the advantage of a parameter p < 2.
|
30 |
Image processing in digital pathology: an opportunity to improve the characterization of IHC staining through normalization, compartmentalization and colocalizationVan Eycke, Yves-Remi 15 October 2018 (has links) (PDF)
With the increasing amount of information needed for diagnosis and therapeutic decision-making, and new trends such as “personalized medicine”, pathologists are expressing an increasing demand for automated tools that perform their most recurrent tasks in their daily practice, as well as an increase in the complexity of the analyses requested in their research activities. With current advances in histopathology, oncology, and biology, the current questions require the analysis of protein expression - evidenced using immunohistochemical (IHC) staining - within specific histological structures or tissue components, or the analysis of the co-expression of several proteins in a large number of tissue samples. In this Ph.D. thesis, we developed innovative solutions to make these analyses available for pathologists. To achieve this objective, we have used recent “machine learning” and, in particular, “deep learning” methodologies. We addressed different problems such as image normalization, to solve the important problem of inter-batch variability of IHC staining, and the automatic segmentation of histological structures, to compartmentalize protein expression quantification. Finally, we adapted image registration techniques to Tissue MicroArray (TMA) slide images to enable large-scale analyses of IHC staining colocalization. While imagenormalization will improve study reproducibility, the tools developed for automated segmentation will drastically reduce time and expert resources required for some studies as well as errors and imprecision due to the human factor. Finally, the work on image registration can provide answers to complex questions that require studying the potential interaction between several proteins on numerous histological samples. / Avec la quantité croissante d’informations nécessaires au diagnostic et à la prise de décision thérapeutique, et le développement de la “médecine personnalisée”, les pathologistes ont un besoin croissant d’outils automatisés pour exécuter leurs tâches les plus récurrentes. Ces outils se doivent également de réaliser des tâches de plus en plus complexes. En effet, avec les progrès récents en histopathologie, oncologie et biologie, les questions actuelles demandent, par exemple, l’analyse de l’expression de protéines révélées par marquages immunohistochimiques (IHC) au sein de structures ou compartiments histologiques spécifiques, ou encore l’analyse de la co-expression de plusieurs protéines dans un grand nombre d’échantillons. Dans cette thèse de doctorat, nous avons développé des solutions innovantes pour mettre ce type d’analyse à la disposition des pathologistes. Pour atteindre cet objectif, nous avons notamment fait appel à des méthodologies récentes de “machine learning” et, particulièrement, de “deep learning”. Nous avons ainsi abordé différentes questions telles que la normalisation d’images, pour résoudre l’important problème de la variabilité des marquages IHC, et la segmentation automatique de structures histologiques, pour permettre une quantification compartimentée de l’expression de protéines. Enfin, nous avons adapté des techniques dites de “recalage” aux images de lames de Tissue MicroArrays (TMA) pour permettre des analyses de colocalisation de marquages IHC à grande échelle. Alors que la normalisation des images améliore la reproductibilité des évaluations de marquages IHC, les outils développés pour la segmentation automatisée permettent de réduire significativement le temps et les ressources expertes nécessaires, ainsi que les erreurs et imprécisions dues au facteur humain. Enfin, les travaux sur le recalages d’images permettent d’apporter des éléments de réponse à des questions complexes qui nécessitent d’étudier l’interaction potentielle entre plusieurs protéines sur de nombreux échantillons histologiques. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0379 seconds