• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 318
  • 89
  • 51
  • 43
  • 40
  • 15
  • 14
  • 13
  • 9
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 720
  • 97
  • 88
  • 75
  • 73
  • 70
  • 63
  • 61
  • 59
  • 58
  • 58
  • 58
  • 57
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Numerical Simulation and Laboratory Testing of Time-Frequency MUSIC Beamforming for Identifying Continuous and Impulsive Ground Targets from a Mobile Aerial Platform

Silva, Ramon Alejandro 03 October 2013 (has links)
When a microphone array is mounted on a mobile aerial platform, such as an unmanned aerial vehicle (UAV), most existing beamforming methods cannot be used to adequately identify continuous and impulsive ground. Here, numerical simulation results and laboratory experiments are presented that validate a proposed time-frequency beamforming method based on the Multiple Signal Classification (MUSIC) algorithm to detect these acoustic sources from a mobile aerial platform. In the numerical simulations three parameters were varied to test the proposed algorithm’s location estimation performance: 1) the acoustic excitation types; 2) the moving receiver’s simulated flight conditions; and 3) the number of acoustic sources. Also, a distance and angle error analysis was done to quantify the proposed algorithm’s source location estimation accuracy when considering microphone positioning uncertainty. For experimental validation, three laboratory experiments were conducted. Source location estimations were done for: a 600 Hz sine source, a banded white noise source between 700-800 Hz, and a composite source combined simultaneously with both the sine and banded white noise sources. The proposed algorithm accurately estimates the simulated monopole’s location coordinates no matter the excitation type or simulated trajectory. When considering simultaneously-excited, multiple monopoles at high altitudes, e.g. 50 m, the proposed algorithm had no error when estimating the source’s locations. Finally, a distance and angle error analysis exposed how relatively small microphone location error, e.g. 1 cm maximum error, can propagate into large averaged distance error of about 10 m in the far-field for all monopole excitation types. For all simulations, however, the averaged absolute angle error remained small, e.g. less than 4 degrees, even when considering a 5 cm maximum microphone location error. For the laboratory experiments, the sine source had averaged distance and absolute angle errors of 0.9 m and 14.07 degrees from the source’s true location, respectively. Similarly, the banded white noise source’s averaged distance and absolute angle errors were 1.9 m and 47.14 degrees; and lastly, the averaged distance and absolute angle errors of 0.78 m and 8.14 degrees resulted when both the sources were simultaneously excited.
132

Relationship between Brier score and area under the binormal ROC curve

池田, 充, Ishigaki, Takeo, Ikeda, Mitsuru, 山内, 一信, Yamauchi, Kazunobu 03 1900 (has links)
No description available.
133

Effects of interference on GPS timing receivers and their impacts on communications networks.

Khan, Faisal, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2007 (has links)
The rapid evolution of current and upcoming high speed and complex communications networks often necessitates flawless time synchronization among the network nodes in order to guarantee performance. GPS based synchronizers have long been used for synchronizing telecommunications equipment, currently providing an accuracy of up to 10ns. Such high accuracy demands excellent operation from GPS timing receivers. Interference is an important threat to GPS performance. Any degradation in performance, due to the introduction of interference, can cause these receivers to provide a low quality timing solution, or to lose lock with incoming GPS signals altogether. This consideration motivates the study of the performance of GPS timing receivers in the presence of harmful interference. This work is devoted to the theoretical and practical investigations of the effects of RF interference on GPS-based synchronizers and their impacts on communications networks. Contributions made during this work include: a) Identification of the processes and the parameters involved in producing a timing solution which are vulnerable to interference; b) experimentbased confirmation of a hypothesis about the effects of interference on GPS timing receivers; c) identification of the effects of degraded synchronization on the performance of communications networks, especially CDMA and GSM cellular networks, which rely upon GPS based synchronizers; and d) proposal of a method to predict and avoid communications network performance degradation.
134

Ultra-tight integration of GPS/Pseudolites/INS: system design and performance analysis

Swarna, Ravindra Babu, Surveying & Spatial Information Systems, Faculty of Engineering, UNSW January 2006 (has links)
The complementary advantages of GPS and INS have been the principle driving factor to integrate these two navigation systems as an integrated GPS/INS system in various architectural forms to provide robust positioning. Although the loosely coupled and tightly coupled GPS/INS systems have been in existence for over a decade or two and performed reasonably well, nevertheless, the tracking performance was still a concern in non-benign environments such as dynamic scenarios, indoor environments, urban areas, under foliages etc., where the GPS tracking loops lose lock due to the signals being weak, subjected to excessive dynamics or completely blocked. The motivation of this research, therefore, was to address these limitations with an integrated GPS/Pseudolite/INS system using ultra-tight integration architecture. The main research contributions are summarised as below: (a) The performance of the tracking loops in dynamic scenarios were analysed in detail with both conventional and ultra-tight software receivers. The stochastic modelling of the INS-derived Doppler is of utmost importantance in enhancing the benefits of ultra-tight integration, and therefore, two popular stochastic techniques??? Gauss Markov (GM) and Autoregressive (AR), were investigated to model the Doppler signal. The simulation results demonstrate that the AR method is capable of producing better accuracies and is more efficient. The algorithms to determine the AR parameters (order and coefficients) were also provided. (b) The various mathematical relationships that elicit the understanding of the ultra-tightly integrated system were derived in detail. The Kalman filter design and its implementation were also provided. Various simulation and real-time experiments were conducted to study the performance of the filter, and the results confirm the underlying assumptions in the theoretical analyses and the mathematical derivations. Covariance analysis was also performed to study the convergence and stability effects of the filter. (c) Interpolator design using signal processing techniques were proposed to increase the sampling rate of the INS-derived Doppler. To efficiently realise the interpolator transfer function, two optimal techniques were investigated ??? Polyphase and Cascaded Integrator Comb (CIC), and our results show that CIC was more efficient than polyphase in accuracy and real-time implementations. (d) The integration of Pseudolites (PL) with INS in ultra-tight configuration was analysed for an indoor environment. The acquisition and tracking performances of ???Pseudolites-only??? and ???Pseudolite/INS??? modes were compared to study the impact of the inertial signals aiding. The results demonstrate that aiding of the inertial signals with the baseband loops (acquisition and tracking) improve the overall tracking performance. An overview on the effects of the pseudolite signal propagation is also given. (e) Simulation and real-time experiments have been conducted to evaluate the proposed algorithms and the overall design of the ultra-tightly integrated system. A comparison was also done between GPS/PL/INS and GPS/INS integrated systems to study the potential advantages of the pseudolite integration. The details of the field experiment are provided. The data from a real-time experiment was processed to further evaluate the robustness of the system. The results confirm that the developed mathematical models and algorithms are correct.
135

Low Complexity Adaptive Iterative Receivers for Layered Space-Time Coded and CDMA Systems

Teekapakvisit, Chakree January 2007 (has links)
Doctor of Philosophy(PhD) / In this thesis, we propose and investigate promising approaches for interference mitigation in multiple input multiple output (MIMO) and code division multiple access (CDMA) systems. Future wireless communication systems will have to achieve high spectral efficiencies in order to meet increasing demands for huge data rates in emerging Internet and multimedia services. Multiuser detection and space diversity techniques are the main principles, which enable efficient use of the available spectrum. The main limitation for the applicability of the techniques in these practical systems is the high complexity of the optimal receiver structures. The research emphasis in this thesis is on the design of a low complexity interference suppression/cancellation algorithm. The most important result of our research is the novel design of interference cancellation receivers which are adaptive and iterative and which are of low computational complexity. We propose various adaptive iterative receivers, based on a joint adaptive iterative detection and decoding algorithm. The proposed receiver can effectively suppress and cancel co-channel interference from the adjacent antennas in the MIMO system with a low computation complexity. The proposed adaptive detector, based on the adaptive least mean square (LMS) algorithm, is investigated and compared with the non-adaptive iterative receiver. Since the LMS algorithm has a slow convergence speed, a partially filtered gradient LMS (PFGLMS) algorithm, which has a faster convergence speed, is proposed to improve the convergence speed of the system. The performance and computational complexity of this receiver are also considered. To further reduce the computational complexity, we apply a frequency domain adaptation technique into the adaptive iterative receivers. The system performance and complexity are investigated. It shows that the computational complexity of the frequency domain based receiver is significantly lower than that of the time domain based receiver with the same system performance. We also consider applications of MIMO techniques in CDMA systems, called MIMO-CDMA. In the MIMO-CDMA, the presence of the co-channel interference (CCI) from the adjacent antennas and multiple access interference (MAI) from other users significantly degrades the system performance. We propose an adaptive iterative receiver, which provides the capability to effectively suppress the interference and cancel the CCI from the adjacent antennas and the MAI from other users so as to improve the system performance. The proposed receiver structure is also based on a joint adaptive detection and decoding scheme. The adaptive detection scheme employs an adaptive normalized LMS algorithm operating in the time and frequency domain. We have investigated and compared their system performance and complexity. Moreover, the system performance is evaluated by using a semi-analytical approach and compared with the simulation results. The results show that there is an excellent agreement between the two approaches.
136

A Proposal for Efficient Use of the Television Spectrum

Weiss, Martin 22 July 2002 (has links)
It is widely recognized that broadcast spectrum is utilized inefficiently. The principle technical cause of this inefficiency is inexpensive receiver design. In addition, the economics of the industry are such that users do not pay the opportunity costs of spectrum associated with these receivers. In this paper, I develop an approach that would internalize the spectrum opportunity costs so that consumers will make decisions that are economically more rational in terms of their choice of the program delivery channel.
137

Medical Implant Receiver System

January 2012 (has links)
abstract: The medical industry has benefited greatly by electronic integration resulting in the explosive growth of active medical implants. These devices often treat and monitor chronic health conditions and require very minimal power usage. A key part of these medical implants is an ultra-low power two way wireless communication system. This enables both control of the implant as well as relay of information collected. This research has focused on a high performance receiver for medical implant applications. One commonly quoted specification to compare receivers is energy per bit required. This metric is useful, but incomplete in that it ignores Sensitivity level, bit error rate, and immunity to interferers. In this study exploration of receiver architectures and convergence upon a comprehensive solution is done. This analysis is used to design and build a system for validation. The Direct Conversion Receiver architecture implemented for the MICS standard in 0.18 µm CMOS process consumes approximately 2 mW is competitive with published research. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012
138

Concepção de um receptor de cavidade para concentração de energia solar para aplicação em reatores químicos. / Cavity receiver conception for solar concentrating chemical reators.

Luciano Giannecchini Nigro 08 May 2015 (has links)
Este trabalho dimensionou um receptor de cavidade para uso como reator químico de um ciclo de conversão de energia solar para energia química. O vetor energético proposto é o hidrogênio. Isso implica que a energia solar é concentrada em um dispositivo que absorve a radiação térmica e a transforma em energia térmica para ativar uma reação química endotérmica. Essa reação transforma o calor útil em gás hidrogênio, que por sua vez pode ser utilizado posteriormente para geração de outras formas de energia. O primeiro passo foi levantar os pares metal/óxido estudados na literatura, cuja finalidade é ativar um ciclo termoquímico que possibilite produção de hidrogênio. Esses pares foram comparados com base em quatro parâmetros, cuja importância determina o dimensionamento de um receptor de cavidade. São eles: temperatura da reação; estado físico de reagentes e produtos; desgaste do material em ciclos; taxa de reação de hidrólise e outros aspectos. O par escolhido com a melhor avaliação no conjunto dos parâmetros foi o tungstênio e o trióxido de tungstênio (W/WO3). Com base na literatura, foi determinado um reator padrão, cujas características foram analisadas e suas consequências no funcionamento do receptor de cavidade. Com essa análise, determinaram-se os principais parâmetros de projeto, ou seja, a abertura da cavidade, a transmissividade da janela, e as dimensões da cavidade. Com base nos resultados anteriores, estabeleceu-se um modelo de dimensionamento do sistema de conversão de energia solar em energia útil para um processo químico. Ao se analisar um perfil de concentração de energia solar, calculou-se as eficiências de absorção e de perdas do receptor, em função da área de abertura de um campo de coleta de energia solar e da radiação solar disponível. Esse método pode ser empregado em conjunto com metodologias consagradas e dados de previsão de disponibilidade solar para estudos de concentradores de sistemas de produção de hidrogênio a partir de ciclos termoquímicos. / This work aimed to design a cavity receptor for purpose of chemical reactor for cycles of energy conversion of solar energy to chemical energy. The proposed chemical agent is hydrogen gas. Solar energy is concentrated in a device that absorbs thermal radiation, transforming it in thermal energy, used to activate chemical reactions. This reaction transforms the heat in hydrogen gas and the last, in its turn, can be used to generate other forms of energy. The first step oh this work was an assessment of metal/oxides pairs studied in literature, which can be used to activate thermochemical cycles for hydrogen production. These pairs were compared based in four parameters, important to cavity receptor design: reaction temperature, physical state of the reactants and products, material resistance to several cycles; hydrolysis reaction rate and other aspects. The chosen pair, rated as the higher average in all parameters, was the pair tungsten and tungsten trioxide. (W/WO3). Based in the literature, it was determined a standard reactor, which was studied regarding cavity reactor performance. By such analysis, it was possible to determine the main design parameters, therefore, cavity aperture, window transmissivity, and the cavity geometric dimensions. The results allowed to establish a mathematical model in which solar energy can be converted in useful energy for chemical processes, inside a cavity receptor. Given a profile of solar energy concentration, it was calculated absorption and energy lost efficiencies, related to a solar concentration field and radiation available. This method can be used in tandem with available methodologies and data of solar predictions for hydrogen production by concentration systems via thermochemical cycles.
139

Crustal structure of north Peru from analysis of teleseismic receiver functions

Condori, Cristobal, França, George S., Tavera, Hernando J., Albuquerque, Diogo F., Bishop, Brandon T., Beck, Susan L. 07 1900 (has links)
In this study, we present results from teleseismic receiver functions, in order to investigate the crustal thickness and Vp/Vs ratio beneath northern Peru. A total number of 981 receiver functions were analyzed, from data recorded by 28 broadband seismic stations from the Peruvian permanent seismic network, the regional temporary SisNort network and one CTBTO station. The Moho depth and average crustal Vp/Vs ratio were determined at each station using the H-k stacking technique to identify the arrival times of primary P to S conversion and crustal reverberations (PpPms, PpSs + PsPms). The results show that the Moho depth correlates well with the surface topography and varies significantly from west to east, showing a shallow depth of around 25 km near the coast, a maximum depth of 55-60 km beneath the Andean Cordillera, and a depth of 35-40 km further to the east in the Amazonian Basin. The bulk crustal Vp/Vs ratio ranges between 1.60 and 1.88 with the mean of 1.75. Higher values between 1.75 and 1.88 are found beneath the Eastern and Western Cordilleras, consistent with a mafic composition in the lower crust. In contrast values vary from 1.60 to 1.75 in the extreme flanks of the Eastern and Western Cordillera indicating a felsic composition. We find a positive relationship between crustal thickness, Vp/ Vs ratio, the Bouguer anomaly, and topography. These results are consistent with previous studies in other parts of Peru (central and southern regions) and provide the first crustal thickness estimates for the high cordillera in northern Peru.
140

Software pro komunikaci s GPS přijímačem / Software for Communication with GPS Receiver

Vrba, Pavol January 2011 (has links)
The main goal of this master’s thesis is to over study, reconsider and make a program, which will be capable to interpose information from GPS module, different markers and necessary information’s, geographic coordinates obtained from GPS will be projected in its interface and also on map. This project contains of 3 parts. The first one exactly describes GPS, its history, structure, principle, competitive types of navigations systems and also GPS’ services and technical parameters. The second part of this project describes GPS hardware, used receiver of this signal. There is also mentioned its technical parameters and communication with outside world. The third part is in scripted the software for communication with GPS receiver. We can also see the description of code, in which is mentioned communication protocol and imaging the position on the map. It was programmed in C# language on platform Microsoft Visual Studio 2008 Express Edition.

Page generated in 0.0352 seconds