Spelling suggestions: "subject:"deceptors, methylaspartate."" "subject:"deceptors, dimethylaspartate.""
11 |
Characterization of the glutamatergic inputs in rat substantia nigra pars reticulata neurones: a patch clamp study.January 1999 (has links)
by Cheng Wai Ming. / Thesis submitted in: October, 1998. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 54-68 (2nd gp.)). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.iv / ABSTRACT --- p.v / ABSTRACT (Chinese) --- p.vii / Chapter CHAPTER 1 --- LITERATURE REVIEW --- p.1 / Chapter 1.1 --- Ionotropic glutamate receptors --- p.1 / Chapter 1.1.1 --- AMP A receptor --- p.3 / Chapter 1.1.1.1 --- Structure of AMP A receptor --- p.3 / Chapter 1.1.1.2 --- Electrophysiological properties of AMPA receptor --- p.4 / Chapter 1.1.1.3 --- Pharmacology of AMPA receptors --- p.6 / Chapter 1.1.1.4 --- Kinetics of AMPA receptors --- p.8 / Chapter 1.1.2 --- NMDA receptor --- p.9 / Chapter 1.1.2.1 --- Structure of NMDA receptor --- p.9 / Chapter 1.1.2.2 --- Electrophysiological properties of NMDA receptor --- p.10 / Chapter 1.1.2.3 --- Pharmacology of NMDA receptor --- p.11 / Chapter 1.1.2.4 --- Kinetics of NMDA receptor --- p.12 / Chapter 1.2. --- The basal ganglia and the SNR --- p.12 / Chapter 1.3 --- Excitatory glutamatergic inputs on SNR --- p.16 / Chapter 1.4 --- Aim of study --- p.17 / Chapter CHAPTER 2 --- Electrophysiological properties of SNR neurones --- p.18 / Chapter 2.1 --- Introduction --- p.18 / Chapter 2.2 --- Methods --- p.19 / Chapter 2.2.1 --- In vitro slice preparation and maintenance --- p.19 / Chapter 2.2.2 --- Whole-cell patch-clamp recording --- p.20 / Chapter 2.2.3 --- Solutions and drugs --- p.21 / Chapter 2.2.4 --- Histological methods --- p.21 / Chapter 2.2.5 --- Data analysis --- p.22 / Chapter 2.3 --- Results --- p.22 / Chapter 2.3.1 --- Passive membrane properties of SNR neurones --- p.22 / Chapter 2.3.2 --- Firing rate and action potential characteristics --- p.23 / Chapter 2.3.3 --- Firing patterns --- p.23 / Chapter 2.3.4 --- Weak hyperpolarization activated inward rectification --- p.24 / Chapter 2.3.5 --- Slow aflerhyperpolarization --- p.25 / Chapter 2.3.6 --- Current-frequency relationship --- p.25 / Chapter 2.3.7 --- Morphology of labelled SNR neurones --- p.25 / Chapter 2.4 --- Discussion and conclusion --- p.26 / Chapter CHAPTER 3 --- AMPA and NMDA induced membrane responses --- p.30 / Chapter 3.1 --- Introduction --- p.30 / Chapter 3.2 --- Methods --- p.31 / Chapter 3.2.1 --- In vitro slice preparation and maintenance --- p.31 / Chapter 3.2.2 --- Whole-cell patch-clamp recording --- p.31 / Chapter 3.2.3 --- Solutions and drugs --- p.31 / Chapter 3.2.4 --- Drug application --- p.32 / Chapter 3.2.5 --- Immunocytochemistry --- p.32 / Chapter 3.2.6 --- Data analysis --- p.33 / Chapter 3.3 --- Results --- p.33 / Chapter 3.3.1 --- AMPA induced responses in SNR GABA neurones --- p.33 / Chapter 3.3.1.1 --- AMPA induced membrane depolarization --- p.33 / Chapter 3.3.1.2 --- AMPA induced membrane current --- p.34 / Chapter 3.3.1.3 --- Current-voltage relationship --- p.34 / Chapter 3.3.1.4 --- Effect of NBQX --- p.35 / Chapter 3.3.1.5 --- Effects of JSTX and spermine --- p.35 / Chapter 3.3.2 --- NMDA-induced response in SNR GABA neurones --- p.36 / Chapter 3.3.2.1 --- NMDA induced membrane depolarization --- p.36 / Chapter 3.3.2.2 --- NMDA induced membrane current --- p.36 / Chapter 3.3.2.3 --- APV blocked NMDA-induced current --- p.36 / Chapter 3.3.2.4 --- Effect of glycine on NMDA induced response --- p.37 / Chapter 3.3.2.5 --- Mg2+-sensitivity --- p.37 / Chapter 3.3.2.6 --- Current-voltage relationship --- p.38 / Chapter 3.3.3 --- GluR2 subunit immunostaining --- p.38 / Chapter 3.4 --- Discussion and conclusion --- p.39 / Chapter 3.4.1 --- AMPA receptors in SNR neurones --- p.39 / Chapter 3.4.2 --- NMDA receptors in SNR neurones --- p.41 / Chapter 3.4.3 --- Functional significance --- p.41 / Chapter CHAPTER 4 --- Glutamate-mediated synaptic currents in SNR --- p.43 / Chapter 4.1 --- Introduction --- p.43 / Chapter 4.2 --- Methods --- p.44 / Chapter 4.2.1 --- In vitro slice preparation and maintenance --- p.44 / Chapter 4.2.2 --- Electrophysiological recordings --- p.44 / Chapter 4.2.3 --- Electrical stimulation --- p.45 / Chapter 4.2.4 --- Solutions and drugs --- p.45 / Chapter 4.2.5 --- Data analysis --- p.46 / Chapter 4.3 --- Results --- p.46 / Chapter 4.3.1 --- Characteristics of spontaneous EPSCs --- p.46 / Chapter 4.3.1.1 --- General characteristics --- p.46 / Chapter 4.3.1.2 --- Kinetics --- p.47 / Chapter 4.3.1.3 --- Pharmacology --- p.47 / Chapter 4.3.2 --- Characteristics of evoked EPSCs --- p.48 / Chapter 4.3.2.1 --- General characteristics --- p.48 / Chapter 4.3.2.2 --- Pharmacological characterization --- p.49 / Chapter 4.3.2.3 --- Effects of bicuculline --- p.50 / Chapter 4.4 --- Discussion and conclusion --- p.50 / Chapter 4.4.1 --- Excitatory transmission onto SNR neurones --- p.50 / Chapter 4.4.2 --- Source of excitatory drive --- p.51 / Chapter 4.4.3 --- Interaction with GABA inputs --- p.52 / Chapter 4.4.4 --- Functional significance --- p.52 / REFERENCES --- p.54
|
12 |
Pathophysiology of subarachnoid hemorrhage in the rat /Prunell dos Santos, Giselle F., January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 6 uppsatser.
|
13 |
Experimental nerve injury-induced pain : mechanisms and modulation/Wallin, Johan, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 5 uppsatser.
|
14 |
Differential expression in the hippocampus of schizophrenic and control smokers : a high-throughput analysis of the effects of psychopathology, smoking, and postmortem brain parameters on gene expression /Mexal, Sharon. January 2005 (has links)
Thesis (Ph.D. in Human Medical Genetics) -- University of Colorado at Denver and Health Sciences Center, 2005. / Typescript. Includes bibliographical references (leaves 166-195).
|
15 |
Plasticity in the dopamine 1 receptor system : behavior and cell biological studies /Scott, Lena, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 5 uppsatser.
|
16 |
Phospho-regulation of hippocampal NMDA receptor localization and function /Goebel, Susan Michelle. January 2007 (has links)
Thesis (Ph.D. in Neuroscience) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 200-233). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
|
17 |
Mechanisms of specificity in neuronal activity-regulated gene transcription.Lyons, MR, West, AE 08 1900 (has links)
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain. / Dissertation
|
18 |
Regulation of Higher Order Chromatin at GRIN2B and GAD1 Genetic Loci in Human and Mouse Brain: A DissertationBharadwaj, Rahul 14 February 2013 (has links)
Little is known about higher order chromatin structures in the human brain and their function in transcription regulation. We employed chromosome conformation capture (3C) to analyze chromatin architecture within 700 Kb surrounding the transcription start site (TSS) of the NMDA receptor and schizophrenia susceptibility gene, GRIN2B, in human and mouse cerebral cortex. Remarkably, both species showed a higher interaction between the TSS and an intronic sequence, enriched for (KRAB) Krueppel associated Box domain binding sites and selectively targeted by the (H3K9) histone 3 lysine 9 specific methyltransferase ESET/SETDB1. Transgenic mice brain cortical nuclei over-expressing Setdb1 showed increased heterochromatin-protein 1 signal at the interacting regions coupled with decreased Grin2b expression. 3C further revealed three long distant chromatin loop interactions enriched with functional enhancer specific (H3K27Ac) histone 3 lysine 27 acetylation signal in GRIN2B expressing tissue (human cortical nuclei and Human Embryonic Kidney - HEK cells). Doxycycline-induced SETDB1 over-expression decreased 2 out of 3 loop interaction frequencies suggesting a possible SETDB1-mediated transcription repression. We also report a specific looping interaction between a region 50Kb upstream of the (GAD1) Glutamic Acid Decarboxylase – 1 gene TSS and the GAD1 TSS in human brain nuclei. GAD1 catalyzes the rate limiting step in (GABA) gamma amino-butyric acid synthesis and is quintessential for inhibitory signaling in the human brain. Clinical studies in schizophrenia brain samples reveal a decreased looping interaction frequency in correspondence with a decrease in gene expression. Our findings provide evidence for the existence of transcription relevant higher order chromatin structures in human brain.
|
19 |
A PK2/Bv8/PROK2 antagonist suppresses tumorigenic processes by inhibiting angiogenesis in glioma and blocking myeloid cell infiltration in pancreatic cancer.Curtis, VF, Wang, H, Yang, P, McLendon, RE, Li, X, Zhou, QY, Wang, XF January 2013 (has links)
Infiltration of myeloid cells in the tumor microenvironment is often associated with enhanced angiogenesis and tumor progression, resulting in poor prognosis in many types of cancer. The polypeptide chemokine PK2 (Bv8, PROK2) has been shown to regulate myeloid cell mobilization from the bone marrow, leading to activation of the angiogenic process, as well as accumulation of macrophages and neutrophils in the tumor site. Neutralizing antibodies against PK2 were shown to display potent anti-tumor efficacy, illustrating the potential of PK2-antagonists as therapeutic agents for the treatment of cancer. In this study we demonstrate the anti-tumor activity of a small molecule PK2 antagonist, PKRA7, in the context of glioblastoma and pancreatic cancer xenograft tumor models. For the highly vascularized glioblastoma, PKRA7 was associated with decreased blood vessel density and increased necrotic areas in the tumor mass. Consistent with the anti-angiogenic activity of PKRA7 in vivo, this compound effectively reduced PK2-induced microvascular endothelial cell branching in vitro. For the poorly vascularized pancreatic cancer, the primary anti-tumor effect of PKRA7 appears to be mediated by the blockage of myeloid cell migration/infiltration. At the molecular level, PKRA7 inhibits PK2-induced expression of certain pro-migratory chemokines and chemokine receptors in macrophages. Combining PKRA7 treatment with standard chemotherapeutic agents resulted in enhanced effects in xenograft models for both types of tumor. Taken together, our results indicate that the anti-tumor activity of PKRA7 can be mediated by two distinct mechanisms that are relevant to the pathological features of the specific type of cancer. This small molecule PK2 antagonist holds the promise to be further developed as an effective agent for combinational cancer therapy. / Dissertation
|
Page generated in 0.053 seconds