• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 390
  • 360
  • 56
  • 43
  • 38
  • 11
  • 11
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1092
  • 329
  • 307
  • 216
  • 184
  • 157
  • 138
  • 119
  • 117
  • 97
  • 96
  • 93
  • 89
  • 85
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Generation of recombinant human respiratory syncytial viruses to study antigenic subtype differences, attachment glycoprotein evolution, and polymerase localization

Olinger, Grace Y. 01 November 2017 (has links)
Human respiratory syncytial virus (HRSV) is a negative sense, single strand RNA virus that causes respiratory tract infection with common cold-like symptoms, which can be severe in children, immunocompromised, and the elderly. Even with 60 years of research, the need for vaccine and effective treatment has not been met. In this work, recombinant viruses have been generated which will be valuable in gaining a better understanding of HRSV subtypes, glycoprotein evolution, and the polymerase localization, which would contribute to HRSV vaccine and therapeutics development. The differences in the fitness of A and B antigenic subtypes of HRSV and how it affects the regional circulation pattern is not well understood. To study and compare the two subtypes, it is important to use clinically relevant recombinant viruses and to use animal models that best represent human infection. Using a wild-type virus strain (A11 and B05) from each HRSV subtype, a wild-type like recombinant (r) virus, rHRSVA11, and recombinant viruses expressing fluorescent proteins, rHRSVA11EGFP(5) and rHRSVB05dTom(5), were generated. Characterization of rB05 viruses demonstrated that the differences in the fluorescent protein expressed did not affect virus growth kinetics. To prepare for an experiment in cotton rats, recombinant HRSVs generated were used to infect cotton rat lung cells in vitro. With confirmation of infection of cotton rat lung cells by rHRSV, cotton rat co-infection experiment was planned for the recombinant A11 and B05 viruses and a microneutralization assay was developed for post-infection processing of the in vivo samples. The BA genotype of HRSV B subtype is a strain of HRSV B subtype containing a 60 nucleotide duplication in the glycoprotein (G) gene. HRSV BA genotype was first isolated in 1998 and has quickly become the predominant genotype circulating globally. Although a role of immune evasion by the strains of BA genotype has been suggested to explain this phenomenon, few studies have supported this hypothesis. To compare the HRSV B subtype virus with and without the duplication, rB05 virus lacking the duplication, rHRSVB05EGFP(5)GΔ60b, and containing an epitope tag within the duplication, rHRSVB05EGFP(5)Gmycb, were generated. A serial passage experiment was set up using rHRSVB05EGFP(5) and rHRSVB05EGFP(5)GΔ60b to understand the mutations that accumulate in the G protein gene of each virus. This will be valuable in setting up a similar experiment in the presence of immune pressure to understand the advantage that is conferred to the virus containing the duplication. Expression of Gmyc was confirmed in rHRSVB05EGFP(5)Gmyc infection, which validated that this virus can be used to study the HRSVB05 G protein and modifications in the duplicated region. The HRSV large (L) protein is essential in HRSV transcription and replication, but is difficult to study due to lack of immunologic reagents and challenges with purification. Recombinant viruses expressing reporter and polymerase fusion proteins have been generated and used for studying various other viral polymerases. Expression plasmids for HRSV L protein containing a reporter protein in its variable region 2 have been published. However, the modification resulted in downregulation in the function of the protein and rHRSV expressing modified L protein have not yet been published. In this study, rHRSVB05LVenus was generated to study the effects of modification of HRSV L protein variable region and the localization of HRSV L protein. LVenus protein in rHRSVB05LVenus infected cells was visualized by confocal laser scanning microscopy and the expression levels were examined by immunoblotting. rHRSVB05LVenus was compared to rHRSVB05EGFP(5) with unmodified L protein to show that modification of HRSV L protein had no effect on virus replication. Viruses had equivalent growth kinetics and were equally sensitive to ribavirin, a known HRSV inhibitor. The recombinant viruses generated in this study are valuable tools in answering questions that are difficult to pursue without clinically relevant recombinant viruses. Characterization of the rHRSVs demonstrated that these viruses will have many applications. In this study, viruses were characterized for the basic growth kinetics, expression of proteins of interest, and assay development. With these validated tools, questions such as the cause of the epidemiological pattern observed for HRSV A and B subtypes, the role of host immune response in advantage conferred to HRSV BA genotype, and the effects of inhibitors to formation of HRSV polymerase complex can be addressed. / 2018-10-31T00:00:00Z
362

Expression, Purification, and Characterization of the Mast Cell Proteases Chymase and Cathepsin G.

Lockhart, Brent E 03 May 2008 (has links)
Human mast cells have been associated with wound healing, allergies, inflammation, and defense against pathogens and have been detected in tissues close to blood vessels especially in the areas between the inside of the body and the external environment, such as the skin, lungs, digestive tract, mouth, and nose. Previous studies have shown that mast cells contain large granules filled with histamine, heparin, cytokines, eicosanoids, and the serine proteases, tryptase, Chymase, and cathepsin G (CatG). These proteases are stored and released from mast-cell granules upon activation by antigen binding to IgE immunoglobulins on the cell surface or by direct injury. In this study, chymase and CatG were expressed as active enzymes in the yeast Pichia pastoris by homologous recombination of the cDNA coding for the mature active proteases into the Pichia genome. Methanol induction resulted in the secretion of active enzyme into the Pichia growth media and increasing levels of enzyme were detected in the media for 5 days. Cells that secreted the highest levels of activity were selected by kinetic assay. Active chymase was purified from the culture media with a 22% yield of activity by a simple two-step procedure that involved hydrophobic-interaction chromatography followed by affinity chromatography on immobilized heparin. The major peak from the heparin column contained a single band of 30.6 kDa on SDS/PAGE. The purified recombinant human chymase was 96% active and the yield was 2.2 mg/l of growth media. Active CatG was partially purified from culture media using an ultrafiltration. Mass Spectroscopy (Maldi-Tof) data confirmed that the major protein band was CatG, resulting in the first active human CatG to be produced recombinantly. Additionally, the partially purified enzyme was active against both chymotrypsin and trypsin substrates, and its reaction with inhibitors was consistent with CatG. Although the protein yields were low, these results confirm that CatG was recombinantly expressed.
363

Pointillism in Plant Systems Biology: I. Proteomic Analysis of Plant Exosome-like Particles II. Amyloplast-binding Puroindoline Fusion Proteins for Recombinant Protein Expression.

Greenham, Trevor 24 September 2019 (has links)
Expanding upon our understanding of plant defense is critical, particularly with the perilous threats of climate change and overpopulation to our food security, health and well-being. In this study, we focused on plant defense using two distinct approaches. First, we performed a proteomic analysis of plant exosome-like nanoparticles in order to elucidate their defense related protein cargo. Secondly, we used a wheat antimicrobial protein, puroindoline, as a fusion partner for the expression of recombinant proteins in rice endosperm. Plant exosome-like nanoparticles (ELP) were isolated from fresh tomato and subjected to mass spectrometry (MS) analysis. The ELPs were compared to fresh pressed tomato juice, and the proteins that were significantly upregulated in the ELPs were analyzed for their defensive properties. Bioinformatic analysis identified 30 proteins upregulated in the ELPs, with a majority of these being involved in plant defense. Puroindoline is a protein found in soft wheat varieties. A unique feature of this protein is the presence of a tryptophan-rich domain, which causes it to localize and tether onto starch granule surfaces; a property we are seeking to exploit for recombinant protein isolation. We hypothesized that when expressed in a pin-null crop, such as rice, puroindoline along with its fusion partner will localize and adhere to starch granule surfaces. PIN fusions were expressed in rice, and their subcellular localization was determined by immunolocalization. It was observed that PIN localizes to rice starch ii granules in vitro and in planta, and retains its starch granule binding abilities as a fusion partner. To identify other possible starch granule binding fusion partners, an anhydrous cleavage method was developed that can scan dry biological materials for associated proteins, in this case the starch granule surface. Incubation of our cleavage reagent with isolated rice starch granules yielded several cleavage products as determined through SDS-PAGE. These cleavage products were compared with previous proteomic data of trypsin digested rice starch granules.
364

Studium proteas virů Zika a Dengue / Analysis of Zika and Dengue virus proteases

Novotný, Pavel January 2019 (has links)
in English Zika and Dengue flaviviruses are transmitted by mosquitoes in human populations living in tropical areas. They cause fevers which in the case of Dengue can lead to life threatening haemorrhagic form. There is a possible relationship between pregnant women being infected by Zika virus and higher risk of microcephaly in new-borns. The infection is currently treated mainly symptomatically. However, there is an effort to develop compounds which block viral life cycle and viral spread through organism. Viral enzymes, such as flaviviral proteases, are regarded as suitable targets for this effort. These serine proteases with chymotrypsin fold are heterodimers which consist of flaviviral non- structural proteins NS2B and NS3. NS3 domain also contains a helicase, which can be removed by gene recombination for study purposes. NS2B is a transmembrane protein, but only a hydrophilic 40 amino acid peptide is important for the interaction with NS3 domain. This peptide has a chaperon function and participates in substrate binding to the active site. In this study, six variants of recombinant proteins containing activating peptide of NS2B and protease domain of NS3 were expressed and purified. Four variants were characterized in enzymologic studies including testing of possible inhibitors. A dipeptide...
365

Use of Recombinant Human Granulocyte Colony Stimulating Factor as an Adjunct in Antifungal Chemotherapy in Various Animal Model Systems

Farrell, Lindi 01 May 1995 (has links)
The growing neutropenic patient population provides an ideal target for opportunistic fungal infections. Several effective antifungal drugs are toxic at high doses and contraindicated for long-term treatment. Recombinant human granulocyte colony stimulating factor (rhG-CSF) has been shown to increase neutrophilic numbers and functions, thus providing enhanced host defense. Improved efficacy by using rhG-CSF in conjunction with various antifungal agents was the primary focus of these studies. Use of rhG-CSF in a murine model of vaginal candidiasis did not reduce vaginal colony counts, or improve vaginal histophathology scores. Administration of rhG-CSF in a murine model of pulmonary aspergillosis improved survival, clinical signs, and gross pathology and histophathology scores of the lungs, and increased weight gain. The rhG-CSF was not shown to be an effective therapeutic treatment in this model of vaginal candidiasis. The rhG-CSF was, however, an effective prophylactic treatment in this model of pulmonary aspergillosis.
366

Cloning, Expression, and Sequence Analysis of Camelysin, a Zinc Metalloprotease from <em>Bacillus anthracis</em> and <em>B. cereus</em>

Myers, Andrew Ross 18 July 2005 (has links)
Bacillus anthracis and B. cereus are well known etiological agents, which cause disease in healthy and immunocompromised individuals. Considering the abundance and lethality of these organisms it is imperative that research is performed to identify and analyze new factors that may contribute to their pathogenicity. Camelysin is a membrane bound, zinc metalloprotease isolated from B. cereus. Assays performed on purified camelysin demonstrate that the protease exhibits fibrinolytic, collagenolytic, and actin degradation activity, any of which can contribute to the organisms ability to invade host tissues and cause damage. Considering the putative role of camelysin in pathogenicity, it would be beneficial to study the effects of camelysin in tissue cultures or animal models. The goal of this study focused on the cloning and expression of camelysin from B. cereus and its homolog in B. anthracis. Expression of a fusion tagged protein may assist in the purification of camelysin as well as overcoming the native proteins extreme insolubility. Primers were designed to amplify the camelysin gene from B. cereus for cloning into the prokaryotic pBAD TOPO® TA, pET100/D-TOPO®, and the eukaryotic pcDNA3.1/V5-His© TOPO[registered trademark] TA expression vectors. Primers were also designed to amplify the gene from B. anthracis for cloning into the pBAD TOPO® TA vector. The recombinant clones were induced and successful expression of the protein was confirmed by performing SDS-PAGE, Western blotting, and an azocasein protease assay. The recombinant proteins exhibited casein degradation activity which is observed with purified camelysin from B. cereus. This study successfully demonstrated the presence of the camelysin protein in B. anthracis. Furthermore, the recombinant clones obtained will be useful for purification and analysis of camelysin and delineation of its role in the pathogenicity of B. cereus and B. anthracis.
367

Effects of insulin and the interaction between insulin and recombinant bovine somatotropin on the production of milk and its components and on IGF-I plasma levels

Molento, Carla Forte Maiolino. January 2001 (has links)
No description available.
368

The molecular and functional characterization of soluble Ifnar-2

Hardy, Matthew Philip,1974- January 2001 (has links)
Abstract not available
369

Pharmacological characterisation of relaxin and the relaxin receptor

Judkins, Courtney Peta January 2004 (has links)
Abstract not available
370

The genetics of variation in gene expression

Cotsapas, Chris, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2005 (has links)
The majority of genetic differences between species and individuals have been hypothesised to impact on the regulation, rather than the structure, of genes. As the details of genetic variation are uncovered by the various genome sequencing projects, understanding the functional effects on gene regulation will be key to uncovering the molecular mechanisms underying the genesis and inheritance of common phenotypes, such as complex human disease and commercially important traits in plants and animals. Unlike coding sequence polymorphisms, genetic variants affecting gene expression will reside in the transcriptional machinery and its regulatory inputs. As these are largely specific to cell- or tissue-types, we would expect that regulatory variants will also affect final mRNA levels in a tissue specific manner. Genetic variation between individuals may therefore be more complex than the sum total of sequence differences between them. Demonstrating this hypothesis is the main focus of this thesis. We use microarrays to measure mRNA levels of approximately 22,000 transcripts in inbred and recombinant inbred strains of mice, and present compelling evidence that the genetic influences on these levels are tissue-specific in at least 85% of cases. We uncover two loci which apparently influence transcript levels of multiple genes in a tissue-specific manner. We also present evidence that failure of microarray data normalisation may cause spurious linkage of expression phenotypes leading to erroneous biological conclusions, and detail a novel, extensible mathematical framework for performing tailored normalisation which can remove such systematic bias. The wider context of these results is then discussed.

Page generated in 0.0609 seconds