Spelling suggestions: "subject:"recombinant"" "subject:"ecombinant""
411 |
Nasal delivery of recombinant human growth hormone with pheroid technology / Dewald SteynSteyn, Johan Dewald January 2006 (has links)
Over the past couple of years there has been rapid progress in the development and design of
safe and effective delivery systems for the administration of protein and peptide drugs. The
effective delivery of these type of drugs are not always as simple as one may think, due to
various inherent characteristics of these compounds.
Due to the hydrophilic nature and molecular size of peptide and protein drugs, such as
recombinant human growth hormone, they are poorly absorbed across mucosal epithelia,
both transcellularly and paracellularly. This problem can be overcome by the inclusion of
absorption enhancers in peptide and protein drug formulations but this is not necessarily the
best method to follow.
This investigation focussed specifically on the evaluation of the ability of the PheroidTM
carrier system to transport recombinant human growth hormone across mucosal epithelia
especially when administered via the nasal cavity. The PheroidTM delivery system is a
patented system consisting of a unique submicron emulsion type formulation. The PheroidTM
delivery system, based on PheroidTM technology, will for ease of reading be called Pheroid(s)
only throughout the rest of this dissertation.
The Pheroid carrier system is a unique microcolloidal drug delivery system. A Pheroid is a
stable structure within a novel therapeutic system which can be manipulated in terms of
morphology, structure, size and function. Pheroids consist mainly of plant and essential fatty
acids and can entrap, transport and deliver pharmacologically active compounds and other
useful substances to the desired site of action.
The specific objectives of this study can be summarised as follows:
a literature study on Pheroid technology;
a literature study on chitosan and N-trimethyl chitosan chloride;
a literature study on recombinant human growth hormone (somatropin);
a literature study on nasal drug administration;
formulation of a suitable Pheroid carrier;
entrapment of somatropin in the Pheroid carrier, and
in vivo evaluation of nasal absorption of somatropin in Sprague-Dawley rats. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
|
412 |
DNA-Assisted Immunoassays for High-Performance Protein AnalysesYan, Junhong January 2014 (has links)
Proteins play important roles in most cellular functions, such as, replication, transcription regulation, signal transduction, for catalyzing chemical reaction, etc. Technologies developed to identify proteins rely either on observing their own properties such as charge, size, mass to charge ratio or sequence composition; or on using affinity reagents that recognize specific protein targets. Immunoassays utilizing functionalized affinity reagents are powerful for targeted proteomics. Among them, DNA-assisted immunoassays in which affinity reagents are labeled with DNA molecules, offer some unique advantages. In this thesis, I will present works to improve current DNA-assisted immunoassays such as proximity ligation assays (PLA), as well as to take advantage of DNA reactions to adress other problems. In paper I, a new solid support (MBC-Ts) was functionalized with antibodies and used in the solid-phase PLA for detection of VEGF. The assay using MBC-Ts was compared among the commercially available solid supports in different matrices and it was shown to exhibit enhanced limit of detection in complex matrices. In paper II, a two-step protocol was described to prepare high-quality probes used in homogeneous and in situ PLA by purifying DNA-labeled affinity reagents from unconjugated affinity reagents and excess oligonucleotides. In paper III, PLA was applied on a capillary western blotting instrument so that both the sensitivity and specificity of the original assay were improved. In paper IV, a new method was introduced to profile protein components in individual protein complexes by DNA-barcoded antibodies. This method has been used to profile protein complexes such as surface proteins on individual secreted vesicles.
|
413 |
Simultaneous clarification and purification of recombinant penicillin G acylase using tangential flow filtration anion-exchange membrane chromatographyOrr, Valerie 29 March 2012 (has links)
Downstream purification often represents the most cost-intensive step in the manufacturing of recombinant proteins. Conventional purification processes are lengthy, technically complicated, product specific and time-consuming. To address this issue, herein we develop a one step purification system that due to the nature of the non-selective secretion system and the versatility of ion-exchange membrane chromatography can be widely applied to the production of many recombinant proteins. This was achieved through the integration of the intrinsically coupled upstream, midstream and downstream processes, a connection that is rarely exploited.
A bioprocess for effective production and purification of penicillin G acylase (PAC) was developed. PAC was overexpressed in a genetically engineered Escherichia coli strain, secreted into the cultivation medium, harvested, and purified in a single step by anion-exchange chromatography. The cultivation medium developed had a sufficiently low conductivity to allow direct application of the extracellular fraction to the anion-exchange chromatography medium while providing all of the required nutrients for sustaining cell growth and PAC overexpression. It was contrived with the purposes of (i) providing sufficient osmolarity and buffering capacity, (ii) minimizing ionic species to facilitate the binding of extracellular proteins to anion-exchange medium, and (iii) enhancing PAC expression level and secretion efficiency. Employing this medium recipe the specific PAC activity reached a high level of 487 U/L/OD600, with more than 90% was localized in the extracellular medium. Both, the osmotic pressure and induction conditions were found to be critical for optimal culture performance. Furthermore, formation of inclusion bodies associated with PAC overexpression tended to arrest cell growth, leading to potential cell lysis.
iv
At harvest, the whole non-clarified culture broth was applied directly to a tangential flow filtration anion-exchange membrane chromatography system. One-step purification of recombinant PAC was achieved based on the dual nature of membrane chromatography (i.e. microfiltration-sized pores and anion-exchange chemistry). Due to their size, cells remained in the retentate while the extracellular medium penetrated the membrane. Most contaminate proteins were captured by the anion-exchange membrane, whereas the purified PAC was collected in the filtrate. The batch time for both cultivation and purification was less than 24 h and recombinant PAC with high purity (19 U/mg), process yield (74%), and productivity (41 mg/L) was obtained.
|
414 |
Bioprocess Operation Parameters For Benzaldehyde Lyase ProductionYilgor, Pinar 01 August 2004 (has links) (PDF)
In this study, the effects of bioprocess operation parameters on benzaldehyde lyase production were systematically investigated. For this purpose, the research program was carried out in mainly four parts. In the first part of the study, Escherichia coli K12 (ATCC 10798), having the highest benzaldehyde lyase production capacity, was selected as the host microorganism. Next, using the selected microorganism, the production medium was designed in terms of its carbon and nitrogen sources. Among the investigated media, the highest cell concentration and benzaldehyde lyase activity were obtained as 1.8 kg m-3 and 745 U cm-3, respectively, in the medium containing 8.0 kg m-3 glucose, 5.0 kg m-3 (NH4)2HPO4 and the salt solution. Thereafter, by using the designed medium, the effects of bioreactor operation parameters, i.e., oxygen transfer and pH, were investigated in pilot scale bioreactor. Oxygen transfer effects on benzaldehyde lyase production were investigated at QO/VR=0.5 vvm / N=250, 375, 500, 625, 750 min-1 and at QO/VR=0.7 vvm, N=750 min-1 conditions. The highest cell concentration and benzaldehyde lyase activity were obtained at 0.5 vvm, 500 min-1 condition as 2.3 kg m-3 and 860 U cm-3, respectively.
Finally, the effect of pH was investigated for benzaldehyde lyase production process at Qo/VR=0.5 vvm, N=500 min-1 condition, at pHC=5.0, 6.4, 6.7, 7.0, 7.2 and 7.8 values. Among the investigated pH values, the highest cell concentration and enzyme activity were obtained at pHC=7.0 condition as 2.1 kg m-3 / 775 U cm-3. However, the values obtained at this condition, were lower than the values obtained at pHUC=7.2 uncontrolled pH operation. Hence, medium oxygen transfer condition and uncontrolled pH operation are found to be favorable for benzaldehyde lyase production.
|
415 |
Development Of A Glutathione-s-transferase-based Biosensor For The Detection Of Heavy MetalsSaatci, Ebru 01 February 2005 (has links) (PDF)
In the recent years, environmental pollution becomes a health threatening issue for human beings. Technological developments introduce industrial wastes and heavy metals, and developments in agriculture introduce pesticides into the world that we live. All these toxic wastes accumulate in drinking water and food consumed by humans. Therefore, detection of toxic wastes in all kinds of environmental samples, and development of new detection techniques become an important issue.
In this study, development of a protein-based biosensor for detection of heavy metals in environmental samples, by expressing genetically modified glutathione S-transferase (GST-(His)6) protein in E.Coli BL21 (DE3) expression system, was designed. Recombinant GST proteins was expressed in E.Coli BL21 (DE3) expression system and purified with Glutathione Sepharose 4B affinity column and Ni-NTA spin kit. GST activities were determined using the GST substrate 1-chloro-2,4-dinitrobenzene (CDNB). Protein expression was tested by SDS-PAGE and Western blot analysis. Product formation linearly increased up to 1 mM CDNB, 1 mM GSH, 1.7 µ / g proteins in 0.05 M, pH 6.9 phosphate buffer in the final volume of 1.0 ml at 25& / #9702 / C. The Vmax and Km values for GST-(His)6 towards CDNB and GSH were calculated with Lineweaver-Burk as CDNB Vmax / 22.88 µ / mol/min/mg, Km / 4.29 mM,and as GSH Vmax / 6.42 µ / mol/min/mg, 24.45 µ / mol/min/mg, Km / 3.69 mM, respectively.
Biosensor working electrode was prepared by immobilizing the GST-(His)6 by 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride (EDC) coupling on the gold surface. Electrode preparation was confirmed by cyclic voltammetry measurements. The biosensor was inserted as the working electrode in the constructed three(four)-electrode flow cell. The conformational change resulting from the binding of the metal ions to the recombinant protein causing a capacitance change proportional to the concentration of the metal ions was determined. After the working electrode is standardized and calibrated, the heavy metal concentration in water samples was measured.
The GST-(His)6 biosensor has a large operational range between 1 fM and 10 mM and a storage stability of approximately 2 weeks.
The GST-(His)6 biosensor is very sensitive to, Cu+2> / Cd+2> / Zn+2> / Hg+2 metal ions, at low concentrations.
|
416 |
Genetic Improvement of Upper Half Mean Length and Short Fiber Content in Upland Cotton, Gosspium hirsutumBeyer, Benjamin 2012 August 1900 (has links)
Desired base upper half mean length (UHML) of upland cotton (G. hirsutum) in the U.S. has been set a 27.0 mm and is shorter than the standard set by the international community. Upland cotton genotypes from China, South Africa, West Africa, and the U.S. were test crossed to an extra long staple upland (ELSU) and a short staple upland (SSU) and selected genotypes that included both ELSU and MSU phenotypes were crossed in a half-diallel mating scheme to estimate general combing ability (GCA) effects and specific combining ability (SCA) effects. A recombinant inbred line (RIL) population was established to determine the narrow sense heritability (h^2) of AFIS short fiber content by weight (SFCw) and lower half mean length (LHML) and to estimate SFCw using HVI fiber properties.
Obsolete cultivars from China are not likely sources for UHML improvement, cultivars from Africa and the U.S. could harbor alleles not being used in current elite short staple cultivars or modern ELSU cultivars. Two ELSU lines used in this study derived through interspecific hybridization with G. barbadense could contain alleles for UHML improvement in modern ELSU cultivars developed without any apparent G. barbadense introgression. A third line D&PL 45-867, might contain alleles for UHML improvement in long staple upland cotton genotypes.
Narrow sense heritability estimates indicated a much higher heritability of LHML than AFIS SFCw. Correlation between AFIS SFCw and LHML did not agree with previous studies when using an ELSU X MSU cross. Further study is needed to understand this complex relationship.
|
417 |
QTLs for Energy Related Traits in a Sweet × Grain RIL Sorghum [Sorghum bicolor (L.) Moench] PopulationFelderhoff, Terry 2011 August 1900 (has links)
Recent initiatives for biofuel production have increased research and development of sweet sorghum. Currently, the initial major limitation to integrating sweet sorghum into existing production systems is the lack of sweet sorghum hybrids adapted to industrial production systems. Hybrid development is now underway, and the application of genetic markers can be used to define the genetic basis of sugar yield and its components, as well as reduce the time required to deliver new sweet sorghum hybrids to market. The purpose of this research was to further characterize the genetic components that influence sweet sorghum productivity, agronomics, and composition. Specifically, a grain x sweet sorghum recombinant inbred line (RIL) population developed for quantitative trait locus (QTL) analysis related to sugar production was evaluated for 24 phenotypic traits including brix, percent moisture, and biomass yield across four environments. The 185 F4 RILs were derived from the parents 'BTx3197' and 'Rio', which are pithy stalk grain and juicy stalk sweet sorghums respectively. Following screening, two genetic maps were constructed with 372 and 381 single nucleotide polymorphisms (SNPs) evaluated using an Illumina GoldenGate assay. Analysis of the data in QTL Cartographer revealed a major and previously reported QTL for soluble solids on chromosome 3, but in contrast to previous studies, this QTL co-localized with other QTLs that have a negative influence on biomass and seed production. Therefore, selection for this QTL may not be advantageous. Because only a few QTLs for percent moisture were found, the results indicated that the pithy stalk phenotype does not have a major effect on percent moisture as measured in this study. Thus, breeding for high or low moisture content will be more challenging than previously expected. The absence of dominance effects indicated that brix must be high in both parents to produce high brix in the hybrid.
|
418 |
Desarrollo de una vacuna preventiva contra el VIH, basada en BCG recombinantePezzat Said, Elias Bernardo 21 June 2005 (has links)
Construimos mediante ingeniería genética los diferentes vectores de expresión micobacteriano, a partir de los vectores parentales pMV261 y pMV361. Se desarrollaron 3 cepas BCG recombinantes expresando la proteína completa gp120 de la envuelta del VIH, cepa (HXBC2). Se evaluaron diferentes promotores de BCG para inducir la expresión de la proteína heteróloga del VIH. Inicialmente usamos el promotor hsp60 de BCG, un promotor fuerte que ha demostrado ser uno de los más eficaces y posteriormente, se probó con un promotor débil denominado alfa - antígeno. Una vez obtenidas las diferentes cepas BCG recombinantes se evaluó la expresión in vitro de la proteína mediante la técnica de Western blot. Posteriormente evaluamos in vivo la respuesta inmune celular específica, en un modelo animal murino. Se inmunizaron retones con las cepas BCGr: 222VIHA, BCGr: 223VIHA y virus vaccinia modificado cepa Ankara (VAM), expresando el inmunogeno del VIHA correspondiente a la proteína entera gag y envuelta del subtipo A predominante en África del este, más diferentes epítopos CTL de nef, pol. La respuesta específica de células T CD8+, se detectó por la tinción de los tetrámeros y por la tinción intracelular de IFN-alfa. Finalmente para superar las limitantes en la diferenciación de la inducción de citocinas entre BCG (cepa salvaje) y BCGr por la técnica de ELISPOT, evaluamos la expresión génica de IFN-alfa a partir de linfocitos de ratón, detectando el ARNm de esta citocina por la técnica de RT-PCR.Aportaciones de la tesis:- Diseño y desarrollo, por ingeniería genética y biología molecular de 3 cepas vacunales de BCG recombinante (BCGr:261VIH-1gp120, BCGr:222VIH-1gp120 y BCGr:223VIH-1gp120)- Estudio y descripción del reajuste genético que produce BCG cepa salvaje, cuando esta es transformada por el vector de expresión micobacteriano pMV261 que incluye clonado el fragmento de ADN que codífica la proteína del VIH-1 gp120 y que culmino con la deleción del mismo. (Este estudio se presento en un póster, en la Conferencia Mundial Sobre Vacunas VIH en Lausanne Suiza sept. 2004) - Los resultados de los ensayos preclínicos, para la evaluación de la inmunogenicidad de nuestras cepas vacunales, para inducir respuesta celular T CD8 específica frente al VIH-1 en ratones, evaluada por diferentes técnicas, proporcionan experiencias de utilidad en futuros ensayos referentes a las dosis, vías de administración y régimen empleado, así como en la selección de la técnica para detectar dicha respuesta inmune.
|
419 |
Recombinant protein production using a Tobacco yellow dwarf virus-based episomal expression vector : control of Rep activityChanson, Aurelie Heitiare January 2009 (has links)
Over the past decade, plants have been used as expression hosts for the production of pharmaceutically important and commercially valuable proteins. Plants offer many advantages over other expression systems such as lower production costs, rapid scale up of production, similar post-translational modification as animals and the low likelihood of contamination with animal pathogens, microbial toxins or oncogenic sequences. However, improving recombinant protein yield remains one of the greatest challenges to molecular farming. In-Plant Activation (InPAct) is a newly developed technology that offers activatable and high-level expression of heterologous proteins in plants. InPAct vectors contain the geminivirus cis elements essential for rolling circle replication (RCR) and are arranged such that the gene of interest is only expressed in the presence of the cognate viral replication-associated protein (Rep). The expression of Rep in planta may be controlled by a tissue-specific, developmentally regulated or chemically inducible promoter such that heterologous protein accumulation can be spatially and temporally controlled. One of the challenges for the successful exploitation of InPAct technology is the control of Rep expression as even very low levels of this protein can reduce transformation efficiency, cause abnormal phenotypes and premature activation of the InPAct vector in regenerated plants. Tight regulation over transgene expression is also essential if expressing cytotoxic products. Unfortunately, many tissue-specific and inducible promoters are unsuitable for controlling expression of Rep due to low basal activity in the absence of inducer or in tissues other than the target tissue. This PhD aimed to control Rep activity through the production of single chain variable fragments (scFvs) specific to the motif III of Tobacco yellow dwarf virus (TbYDV) Rep. Due to the important role played by the conserved motif III in the RCR, it was postulated that such scFvs can be used to neutralise the activity of the low amount of Rep expressed from a “leaky” inducible promoter, thus preventing activation of the TbYDV-based InPAct vector until intentional induction. Such scFvs could also offer the potential to confer partial or complete resistance to TbYDV, and possibly heterologous viruses as motif III is conserved between geminiviruses. Studies were first undertaken to determine the levels of TbYDV Rep and TbYDV replication-associated protein A (RepA) required for optimal transgene expression from a TbYDV-based InPAct vector. Transient assays in a non-regenerable Nicotiana tabacum (NT-1) cell line were undertaken using a TbYDV-based InPAct vector containing the uidA reporter gene (encoding GUS) in combination with TbYDV Rep and RepA under the control of promoters with high (CaMV 35S) or low (Banana bunchy top virus DNA-R, BT1) activity. The replication enhancer protein of Tomato leaf curl begomovirus (ToLCV), REn, was also used in some co-bombardment experiments to examine whether RepA could be substituted by a replication enhancer from another geminivirus genus. GUS expression was observed both quantitatively and qualitatively by fluorometric and histochemical assays, respectively. GUS expression from the TbYDV-based InPAct vector was found to be greater when Rep was expected to be expressed at low levels (BT1 promoter) rather than high levels (35S promoter). GUS expression was further enhanced when Rep and RepA were co-bombarded with a low ratio of Rep to RepA. Substituting TbYDV RepA with ToLCV REn also enhanced GUS expression but more importantly highest GUS expression was observed when cells were co-transformed with expression vectors directing low levels of Rep and high levels of RepA irrespective of the level of REn. In this case, GUS expression was approximately 74-fold higher than that from a non-replicating vector. The use of different terminators, namely CaMV 35S and Nos terminators, in InPAct vectors was found to influence GUS expression. In the presence of Rep, GUS expression was greater using pInPActGUS-Nos rather than pInPActGUS-35S. The only instance of GUS expression being greater from vectors containing the 35S terminator was when comparing expression from cells transformed with Rep, RepA and REnexpressing vectors and either non-replicating vectors, p35SGS-Nos or p35SGS-35S. This difference was most likely caused by an interaction of viral replication proteins with each other and the terminators. These results indicated that (i) the level of replication associated proteins is critical to high transgene expression, (ii) the choice of terminator within the InPAct vector may affect expression levels and (iii) very low levels of Rep can activate InPAct vectors hence controlling its activity is critical. Prior to generating recombinant scFvs, a recombinant TbYDV Rep was produced in E. coli to act as a control to enable the screening for Rep-specific antibodies. A bacterial expression vector was constructed to express recombinant TbYDV Rep with an Nterminal His-tag (N-His-Rep). Despite investigating several purification techniques including Ni-NTA, anion exchange, hydrophobic interaction and size exclusion chromatography, N-His-Rep could only be partially purified using a Ni-NTA column under native conditions. Although it was not certain that this recombinant N-His-Rep had the same conformation as the native TbYDV Rep and was functional, results from an electromobility shift assay (EMSA) showed that N-His-Rep was able to interact with the TbYDV LIR and was, therefore, possibly functional. Two hybridoma cell lines from mice, immunised with a synthetic peptide containing the TbYDV Rep motif III amino acid sequence, were generated by GenScript (USA). Monoclonal antibodies secreted by the two hybridoma cell lines were first screened against denatured N-His-Rep in Western analysis. After demonstrating their ability to bind N-His-Rep, two scFvs (scFv1 and scFv2) were generated using a PCR-based approach. Whereas the variable heavy chain (VH) from both cell lines could be amplified, only the variable light chain (VL) from cell line 2 was amplified. As a result, scFv1 contained VH and VL from cell line 1, whereas scFv2 contained VH from cell line 2 and VL from cell line 1. Both scFvs were first expressed in E. coli in order to evaluate their affinity to the recombinant TbYDV N-His-Rep. The preliminary results demonstrated that both scFvs were able to bind to the denatured N-His-Rep. However, EMSAs revealed that only scFv2 was able to bind to native N-His-Rep and prevent it from interacting with the TbYDV LIR. Each scFv was cloned into plant expression vectors and co-bombarded into NT-1 cells with the TbYDV-based InPAct GUS expression vector and pBT1-Rep to examine whether the scFvs could prevent Rep from mediating RCR. Although it was expected that the addition of the scFvs would result in decreased GUS expression, GUS expression was found to slightly increase. This increase was even more pronounced when the scFvs were targeted to the cell nucleus by the inclusion of the Simian virus 40 large T antigen (SV40) nuclear localisation signal (NLS). It was postulated that the scFvs were binding to a proportion of Rep, leaving a small amount available to mediate RCR. The outcomes of this project provide evidence that very high levels of recombinant protein can theoretically be expressed using InPAct vectors with judicious selection and control of viral replication proteins. However, the question of whether the scFvs generated in this project have sufficient affinity for TbYDV Rep to prevent its activity in a stably transformed plant remains unknown. It may be that other scFvs with different combinations of VH and VL may have greater affinity for TbYDV Rep. Such scFvs, when expressed at high levels in planta, might also confer resistance to TbYDV and possibly heterologous geminiviruses.
|
420 |
The prevalence of potential recombinant viral vectors in the feral pig population of Cape York PeninsulaHokanson, C. L. Unknown Date (has links)
No description available.
|
Page generated in 0.0565 seconds