• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 4
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Exprese a charakterisace homologů lidské glutamát karboxypeptidasy II / Expression and characterisation of homologs of human glutamate carboxypeptidase II

Bäumlová, Adriana January 2012 (has links)
English abstract Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a membrane bound glycoprotein that belongs to the metallopeptidase M28 family. Two physiological substrates were found for GCPII. The first one, N-acetyl-aspartylglutamate (NAAG), serves as a neurotransmiter in the brain and GCPII hydrolyzes it to yield free glutamate in the synaptic cleft. Excess glutamate might be cytotoxic and eventually lead to excitoxic nerve cells death. Inhibition of NAAG hydrolyzing activity has been shown to be neuroprotective. Therefore, GCPII inhibition was suggested as a therapeutic target in treatment of neurological disorders where excess glutamate is involved. The second substrate, polyglutamyl folate, is a precursor of folic acid which is required for cell growth and development. GCPII cleaves off glutamate from dietary folates and thus facilitates their absorption in small intestine. Although GCPII biological relevance is known only in the brain and the small intestine, its role in the prostate is also important. GCPII has been described as a prostate cancer marker as it is expressed on the membrane of prostate cancer cells. Since GCPII is type II transmembrane protein, it is enzymatically active and undergoes internalization, it has been suggested as a promising tool for specific anticancer-drug...
12

Análise dos genes diferencialmente expressos durante a osteodiferenciação induzida por proteínas morfogenéticas de osso (BMP2 e BMP7) em células C2C12 e super-expressão de rhBMP2 e rhBMP7 em células de mamíferos / Analysis of differentially expressed genes during osteodifferentiation induced by bone morphogenetic proteins (BMP2 and BMP7) of C2C12 cells and overexpression of rhBMP2 and rhBMP7 in mammalian cells

Valenzuela, Juan Carlos Bustos 23 April 2008 (has links)
As BMPs (Bone Morphogenetic Proteins) são membros da superfamília de proteínas TGF-β (Transforming Growth Factor β ), regulam o crescimento e diferenciação de vários tipos celulares em diversos tecidos, e algumas delas desempenham um papel crítico na diferenciação de células de origem mesenquimal em osteoblastos. Particularmente, rhBMP2 e rhBMP7, promovem osteoindução tanto \"in vitro\" como \"in vivo,\" sendo, ambas as proteínas utilizadas terapeuticamente em Ortopedia/Odontologia para reparo ósseo. A expressão diferencial de genes durante a osteodiferenciação de células C2C12 induzida por rhBMP2 e rhBMP7, foi analisada através de microarranjos de DNA, selecionando 31 genes, dos quais 24 foram validados por qPCR, 13 dos quais são relacionados à transcrição, quatro associados a algumas vias de sinalização celular e sete associados à matriz extracelular. Análise funcional destes genes permitirá conhecer, com maiores detalhes, os eventos moleculares que ocorrem durante a diferenciação osteoblástica de células C2C12 induzida por rhBMPs. Em paralelo, foi perseguida a super-expressão de rhBMP2 e rhBMP7 em células HEK293T, demonstrando-se a atividade de rhBMP7, induzindo osteodiferenciação \"in vitro\" e formação de osso \"in vivo\", demonstrando a viabilidade do objetivo de se produzir estas proteínas para futura aplicação como biofármacos no Brasil. / The BMPs (Bone Morphogenetic Proteins) are members of the TGF-β (Transforming Growth Factor β) superfamily of proteins, regulate growth and differentiation of various cell types in various tissues, and some play a critical role in differentiation of mesenchymal cells into osteoblasts. Particularly, rhBMP2 and rhBMP7, promote osteoinduction \"in vitro\" and \"in vivo\" and both proteins are used therapeutically in Orthopedics and Dentistry. The differential expression of genes during osteodifferentiation induced by rhBMP2 and rhBMP7 in C2C12 cells was analyzed through DNA microarrays, allowing the selection of 31 genes, of which 24 were validated by qPCR, 13 of which are related to transcription, four associated with cell signaling pathways and seven are associated with the extracellular matrix. Subsequent functional analysis of these genes should reveal more details on the molecular events which take place during C2C12 cells osteoblastic differentiation induced by rhBMPs In paralel, rhBMPs 2 and 7 were overexpressed in HEK293T cells and BMP7 activity to induce osteodifferentiation \"in vitro\" and bone formation \"in vivo\" was demonstrated, reinforcing the viability of our objective to produce these proteins for future application as biopharmaceuticals in Brazil.
13

Molecular and Genetic Strategies to Enhance Functional Expression of Recombinant Protein in Escherichia coli

Narayanan, Niju January 2009 (has links)
The versatile Escherichia coli facilitates protein expression with relative simplicity, high cell density on inexpensive substrates, well known genetics, variety of expression vectors, mutant strains, co-overexpression technology, extracytoplasmic secretion systems, and recombinant protein fusion partners. Although, the protocol is rather simple for soluble proteins, heterologous protein expression is frequently encountered by major technical limitations including inefficient translation, formation of insoluble inclusion bodies, lack of posttranslational modification mechanisms, degradation by host proteases, and impaired cell physiology due to host/protein toxicity, in achieving functional expression of stable, soluble, and bioactive protein.. In this thesis, model protein expression systems are used to address the technical issues for enhancing recombinant protein expression in E. coli. When yellow fluorescence protein (YFP) was displayed on E. coli cell surface, the integrity of the cell envelope was compromised and cell physiology was severely impaired, resulting in poor display performance, which was restored by the coexpression of Skp, a periplasmic chaperone. On the basis of monitoring the promoter activities of degP, rpoH, and cpxP under various culture conditions, it was demonstrated that the cell-surface display induced the σE extracytoplasmic stress response, and PdegP::lacZ was proposed to be a suitable “sensor” for monitoring extracytoplasmic stress. Intracellular proteolysis has been recognized as one of the key factors limiting recombinant protein production, particularly for eukaryotic proteins heterologously expressed in the prokaryotic expression systems of E. coli. Two amino acids, Leu149 and Val223, were identified as proteolytically sensitive when Pseudozyma antarctica lipase (PalB) was heterologously expressed in Escherichia coli. The functional expression was enhanced using the double mutant for cultivation. However, the recombinant protein production was still limited by PalB misfolding, which was resolved by DsbA coexpression. The study offers an alternative genetic strategy in molecular manipulation to enhance recombinant protein production in E. coli. To overcome the technical limitations of protein misfolding, ineffective disulfide bond formation, and protein instability associated with intracellular proteolysis in the functional expression of recombinant Pseudozyma antarctica lipase B (PalB) in Escherichia coli, an alternative approach was explored by extracellular secretion of PalB via two Sec-independent secretion systems, i.e. the α-hemolysin (Type I) and the modified flagellar (Type III) secretion systems, which can export proteins of interest from the cytoplasm directly to the exterior of the cell. Bioactive PalB was expressed and secreted extracellularly either as HlyA fusion (i.e. PalB-HlyA via Type I system) or an intact protein (via Type III system) with minimum impact on cell physiology. However, the secretion intermediates in the intracellular fraction of culture samples were non-bioactive even though they were soluble, suggesting that the extracellular secretion did mediate the development of PalB activity. PalB secretion via Type I system was fast with higher specific PalB activities but poor cell growth. On the other hand, the secretion via Type III system was slow with lower specific PalB activities but effective cell growth. Functional expression of lipase from Burkholderia sp. C20 (Lip) in various cellular compartments of Escherichia coli was explored. The poor expression in the cytoplasm was improved by several strategies, including coexpression of the cytoplasmic chaperone GroEL/ES, using a mutant E. coli host strain with an oxidative cytoplasm, and protein fusion technology. Fusing Lip with the N-terminal peptide tags of T7PK, DsbA, and DsbC was effective in boosting the solubility and biological activity. Non-fused Lip or Lip fusions heterologously expressed in the periplasm formed insoluble aggregates with a minimum activity. Biologically active and intact Lip was obtained upon the secretion into the extracellular medium using the native signal peptide and the expression performance was further improved by coexpression of the periplasmic chaperon Skp. The extracellular expression was even more effective when Lip was secreted as a Lip-HlyA fusion via the α-hemolysin transporter. Finally, Lip could be functionally displayed on the E. coli cell surface when fused with the carrier EstA.
14

Molecular and Genetic Strategies to Enhance Functional Expression of Recombinant Protein in Escherichia coli

Narayanan, Niju January 2009 (has links)
The versatile Escherichia coli facilitates protein expression with relative simplicity, high cell density on inexpensive substrates, well known genetics, variety of expression vectors, mutant strains, co-overexpression technology, extracytoplasmic secretion systems, and recombinant protein fusion partners. Although, the protocol is rather simple for soluble proteins, heterologous protein expression is frequently encountered by major technical limitations including inefficient translation, formation of insoluble inclusion bodies, lack of posttranslational modification mechanisms, degradation by host proteases, and impaired cell physiology due to host/protein toxicity, in achieving functional expression of stable, soluble, and bioactive protein.. In this thesis, model protein expression systems are used to address the technical issues for enhancing recombinant protein expression in E. coli. When yellow fluorescence protein (YFP) was displayed on E. coli cell surface, the integrity of the cell envelope was compromised and cell physiology was severely impaired, resulting in poor display performance, which was restored by the coexpression of Skp, a periplasmic chaperone. On the basis of monitoring the promoter activities of degP, rpoH, and cpxP under various culture conditions, it was demonstrated that the cell-surface display induced the σE extracytoplasmic stress response, and PdegP::lacZ was proposed to be a suitable “sensor” for monitoring extracytoplasmic stress. Intracellular proteolysis has been recognized as one of the key factors limiting recombinant protein production, particularly for eukaryotic proteins heterologously expressed in the prokaryotic expression systems of E. coli. Two amino acids, Leu149 and Val223, were identified as proteolytically sensitive when Pseudozyma antarctica lipase (PalB) was heterologously expressed in Escherichia coli. The functional expression was enhanced using the double mutant for cultivation. However, the recombinant protein production was still limited by PalB misfolding, which was resolved by DsbA coexpression. The study offers an alternative genetic strategy in molecular manipulation to enhance recombinant protein production in E. coli. To overcome the technical limitations of protein misfolding, ineffective disulfide bond formation, and protein instability associated with intracellular proteolysis in the functional expression of recombinant Pseudozyma antarctica lipase B (PalB) in Escherichia coli, an alternative approach was explored by extracellular secretion of PalB via two Sec-independent secretion systems, i.e. the α-hemolysin (Type I) and the modified flagellar (Type III) secretion systems, which can export proteins of interest from the cytoplasm directly to the exterior of the cell. Bioactive PalB was expressed and secreted extracellularly either as HlyA fusion (i.e. PalB-HlyA via Type I system) or an intact protein (via Type III system) with minimum impact on cell physiology. However, the secretion intermediates in the intracellular fraction of culture samples were non-bioactive even though they were soluble, suggesting that the extracellular secretion did mediate the development of PalB activity. PalB secretion via Type I system was fast with higher specific PalB activities but poor cell growth. On the other hand, the secretion via Type III system was slow with lower specific PalB activities but effective cell growth. Functional expression of lipase from Burkholderia sp. C20 (Lip) in various cellular compartments of Escherichia coli was explored. The poor expression in the cytoplasm was improved by several strategies, including coexpression of the cytoplasmic chaperone GroEL/ES, using a mutant E. coli host strain with an oxidative cytoplasm, and protein fusion technology. Fusing Lip with the N-terminal peptide tags of T7PK, DsbA, and DsbC was effective in boosting the solubility and biological activity. Non-fused Lip or Lip fusions heterologously expressed in the periplasm formed insoluble aggregates with a minimum activity. Biologically active and intact Lip was obtained upon the secretion into the extracellular medium using the native signal peptide and the expression performance was further improved by coexpression of the periplasmic chaperon Skp. The extracellular expression was even more effective when Lip was secreted as a Lip-HlyA fusion via the α-hemolysin transporter. Finally, Lip could be functionally displayed on the E. coli cell surface when fused with the carrier EstA.
15

Recombinant production and in silico analysis of the Androgen receptor ligand binding domain

Simila, Henry Allan January 2006 (has links)
The androgen receptor (AR) fulfils important roles for both sexes. By mediating the biological function of androgens, the AR has remained the target for endocrine therapies treating prostate cancer. The AR also determines the effectiveness of medroxyprogesterone acetate (MPA) in treating AR positive breast cancer. Every man will be affected by prostate cancer if he lives long enough. Prostate cancer continues to be a leading cause of death for males despite research into this cancer covering more than 60 years since Huggins' seminal 1941 study showing that androgens play a key role in this cancer. Unfortunately, significant advances have not been forthcoming and the effect of treatment has remained largely the same over past decades, whereby initial treatment provides temporary remission but eventually advanced cases become refractory to further intervention and the disease recurs in a more aggressive form. A plethora of factors are exquisitely sensitive to minute changes in the AR's structural profile, which can be altered by a single mutation, resulting in aberrant activity. A principal feature of these variant ARs associated with prostate cancer, is enhanced capacity to bind a number of molecules other than its cognate ligand, dihydrotestosterone (DHT). The promiscuous activity of this receptor leads to continued AR signalling and stimulus for the cancer despite low androgen levels induced by treatment regimes. A key question is whether mutations occurring within the AR occur as a result of cancer or contribute to the propagation of the cancer. Recent research has demonstrated that treatments incorporating anti-androgens such as flutamide, which are designed to impede prostate cancer progression by inhibiting AR activity, may actually provide selective pressure favouring somatic mutation of the receptor to take place. The specific changes to the AR which are responsible for gains of function have not been resolved as their crystal structures, which are used to provide conformational analysis of proteins, are tremendously problematic to produce with little success found in literature. Generating representative crystals of the AR protein involves producing soluble recombinant protein. Unfortunately the AR is prone to aggregation and is highly unstable, especially in the presence of antagonistic molecules or absence of a stabilising ligand, preventing the protein from being maintained in the soluble state required for crystallization. In order to produce sufficient quantities of soluble material for crystallization, the androgen receptor's ligand binding domain (LBD) was produced as a recombinant protein in Escherichia coli bacteria strain BL21 (DE3) in the presence of DHT, flutamide, as well as in the absence of ligand. Since soluble unbound AR-LBD has not been produced until now, the bacterial culture containing no ligand was further processed to the stage of cleaving the purification tag from the recombinant protein and represents considerable progress into producing soluble material for crystallizing the troublesome yet considerably important AR in the absence of ligand. Although distinct from prostate cancer in males, AR activity in breast tissue is also a factor determining the action of drugs, such as MPA, included in therapies aimed at breast cancer. The use of MPA has declined primarily due to its adverse effects including unsuccessful generation of a biological response, as well as the advent of other drugs administered for hormonal therapies treating breast cancer. Alternative drugs are needed when breast cancer therapies fail as tumours develop resistance to primary drugs. Although there are a number of drugs on the market, success would be maximised if the determined therapy is matched with the patient, based for example, on their genetic makeup. There is a conundrum whereby some patients with an AR do not respond to MPA, a drug normally recognised by the receptor. In clinical trials it was discovered that an AR with threonine instead of methionine at residue 780 (M780T) fails to activate in response to MPA, but the exact mechanism has remained elusive and needs to be answered at the molecular level. The X-ray crystallographic studies that generate 3D images of macromolecules and wet chemistry, which have traditionally been used to provide insight into science in these dimensions, are incorporated with computer based molecular simulation. This is both complementary and distinct to traditional scientific methodologies, enabling further elucidation of protein-protein interactions, and the influence applied to such inter-relations by natural and drug ligands. This approach has been used, and is continually developed, to understand the binding mechanisms of current drugs as well as designing new drugs. In order to produce a receptor representing the M780T variant, the crystal structure representing the AR-LBD was mutated in silico, into which MPA was then docked. It was found that MPA binds into the M780T AR-LBD with considerably more spatial displacement compared to the position of DHT in the crystal structure, and is predicted to be the primary reason for the inability of MPA to activate this variant AR. The clarification of MPA binding and failure to elicit a response from the variant AR is significant for a cohort of breast cancer patients, as not only does the presence of an AR in the tumour determine the effectiveness of MPA, but correct composition of the AR, specifically, the absence of a M780T mutation. In the absence of this AR mutation, MPA could effectively be used either as an alternative to primary drugs, or in secondary therapies when primary therapies fail. Aberrant activity of variant ARs in response to MPA should also be taken into consideration when analysing drug studies about the effectiveness of MPA. The findings on the loss of response to MPA by the M780T variant AR have been included in the journal article &quotDecreased Androgen Receptor Levels and Receptor Function in Breast Cancer Contribute to the Failure of Response to Medroxyprogesterone Acetate" appearing in the September 2005 issue of Cancer Research journal.
16

Identification and comparative analysis of novel factors from the venom gland of the coastal taipan (Oxyuranus scutellatus) and related species

St Pierre, Liam Daniel January 2005 (has links)
Snake venoms are a complex mixture of polypeptide and other molecules that adversely affect multiple homeostatic systems within their prey in a highly specific and targeted manner. Amongst the most potently toxic venoms in the world are those of the Australian venomous snakes, which belong almost exclusively to the elapid family. Their venoms posses a number of unique properties by which they target the mammalian cardiovascular and neuromuscular systems and are the focus for the identification of novel pharmacologically interesting compounds which may be of diagnostic or therapeutic benefit. Although much is known about the biochemical properties of Australia snake venoms as a whole, little research attention has focused upon individual components at the molecular level. This thesis describes the cloning, characterisation and comparative analysis of a number of unique toxins from the venom gland of the coastal taipan (Oxyuranus scutellatus) and a total of seven other related Australian snakes. These include the factor X- and factor V-like components of a prothrombin activator that causes a highly coagulable state in mammals. Comparative analysis of the sequences identified in this study, along with recombinant expression of an active form of the factor X-like component, provides important information on the structural, functional and evolutionary relationships of these molecules. Numerous other toxins were similarly identified and characterised including a pseudechetoxin-like protein, multiple phospholipase A2 enzymes and neurotoxin isoforms as well as vasoactive venom natriuretic peptides. Identified transcripts included not only toxin sequences but also other cellular peptides implicated in toxin processing, including a calglandulin-like protein. This thesis is the first description of the majority of these molecules at either the cDNA or protein level, and provides a means to study the activity of individual components from snake venoms and probe their function within the systems they specifically target. This study represents the most detailed and comprehensive description to date of the cloning and characterisation of different genes associated with envenomation from Australian snakes.
17

Purification and characterisation of Tex31, a conotoxin precursor processing protease, isolated from the venom duct of Conus textile

Milne, Trudy Jane January 2008 (has links)
The venom of cone snails (predatory marine molluscs of the genus Conus) has yielded a rich source of novel neuroactive peptides or “conotoxins”. Conotoxins are bioactive peptides found in the venom duct of Conus spp. Like other neuropeptides, conotoxins are expressed as propeptides that undergo posttranslational proteolytic processing. Peptides derived from propeptides are typically cleaved at a pair of dibasic residues (Lys-Arg, Arg-Arg, Lys-Lys or Arg-Lys) by proteases found in secretory vesicles. However, many precursor peptides contain multiple sets of basic residues, suggesting that highly substrate specific or differentially expressed proteases can determine processing outcomes. As many of the substrate-specific proteases remain unidentified, predicting new bioactive peptides from cDNA sequences is presently difficult, if not impossible. In order to understand more about the substrate specificity of conotoxin substrate-specific proteases a characterisation study of one such endoprotease isolated from the venom duct of Conus textile was undertaken. The C. textile mollusc was chosen as a good source from which to isolate the endoprotease for two reasons; firstly, these cone shells are found in great abundance on the Great Barrier Reef (Queensland, Australia) and are readily obtainable and secondly, a number of conotoxin precursors and their cleavage products have been previously identified in the venom duct. In order to purify the endoprotease an activity-guided fractionation protocol that included a para-nitroanilide (p-NA) substrate assay was developed. The p-NA substrate mimicked the cleavage site of the conotoxin TxVIA, a member of the C. textile O-superfamily of toxins. The protocol included a number of chromatographic techniques including ion exchange, size-exclusion and reverse-phased HPLC and resulted in isolation of an active protease, termed Tex31, to >95% purity. The purification of microgram quantities of Tex31 made it possible to characterise the proteolytic nature of Tex31 and to further characterise the O-superfamily conopeptide propeptide cleavage site specificity. Specificity experiments showed Tex31 requires a minimum of four residues including a leucine in the P4 position (LNKR↓) for efficient substrate processing. The complete sequence of Tex31 was determined from cDNA. A BLAST search revealed Tex31 to have high amino acid sequence similarity to the CAP (abbreviated from CRISP (Cysteine-rich secretory protein), Antigen 5 and PR-1 (pathogenesis-related protein)) superfamily and most closely related to the CRISP family of mammalian and venom proteins that, like Tex31, have a cysteine-rich C-terminal domain. The CAP superfamily is widely distributed in the animal, plant and fungal kingdoms, and is implicated in processes as diverse as human brain tumour growth and plant pathogenesis. This is the first report of a biological role for the N-terminal domain of CAP proteins. A homology model of Tex31 constructed from two PR-1 proteins, Antigen 5 and P14a, revealed the highly conserved and likely catalytic residues, His78, Ser99 and Glu115. These three amino acids fall within a structurally conserved N-terminal domain found in all CAP proteins. It is possible that other CAP proteins are also substrate-specific proteases. With no homology to any known proteases, Tex31 may belong to a new class of protease. The sequence alignment of five Tex31-like proteins cloned from C. marmoreus, C. litteratus, C. arentus, C. planboris, and C. omaria show very high sequence similarity to Tex31 (~80%), but only one weakly conserved serine residue was identified when the conserved residues of the new Tex31-like protein sequences were aligned with members of the CAP superfamily. Future work to identify members of catalytic diad or triad, e.g. by site-directed mutagenesis, will rely on the expression of active recombinant Tex31. In this study neither Escherichia coli nor Pichia pastoris expression systems yielded active recombinant Tex31 protein, possibly due to the number of cysteine residues hindering the expression of correctly folded active Tex31. This study has shown Tex31 to be highly sequence specific in its cleavage site and it is likely that this high substrate specificity has confounded previous attempts to identify the proteolytic nature of other CAP proteins. With the proteolytic nature of one member of the CAP protein family confirmed, it is hoped this important discovery may lead the way to discovering the role of other CAP family members.
18

Análise dos genes diferencialmente expressos durante a osteodiferenciação induzida por proteínas morfogenéticas de osso (BMP2 e BMP7) em células C2C12 e super-expressão de rhBMP2 e rhBMP7 em células de mamíferos / Analysis of differentially expressed genes during osteodifferentiation induced by bone morphogenetic proteins (BMP2 and BMP7) of C2C12 cells and overexpression of rhBMP2 and rhBMP7 in mammalian cells

Juan Carlos Bustos Valenzuela 23 April 2008 (has links)
As BMPs (Bone Morphogenetic Proteins) são membros da superfamília de proteínas TGF-β (Transforming Growth Factor β ), regulam o crescimento e diferenciação de vários tipos celulares em diversos tecidos, e algumas delas desempenham um papel crítico na diferenciação de células de origem mesenquimal em osteoblastos. Particularmente, rhBMP2 e rhBMP7, promovem osteoindução tanto \"in vitro\" como \"in vivo,\" sendo, ambas as proteínas utilizadas terapeuticamente em Ortopedia/Odontologia para reparo ósseo. A expressão diferencial de genes durante a osteodiferenciação de células C2C12 induzida por rhBMP2 e rhBMP7, foi analisada através de microarranjos de DNA, selecionando 31 genes, dos quais 24 foram validados por qPCR, 13 dos quais são relacionados à transcrição, quatro associados a algumas vias de sinalização celular e sete associados à matriz extracelular. Análise funcional destes genes permitirá conhecer, com maiores detalhes, os eventos moleculares que ocorrem durante a diferenciação osteoblástica de células C2C12 induzida por rhBMPs. Em paralelo, foi perseguida a super-expressão de rhBMP2 e rhBMP7 em células HEK293T, demonstrando-se a atividade de rhBMP7, induzindo osteodiferenciação \"in vitro\" e formação de osso \"in vivo\", demonstrando a viabilidade do objetivo de se produzir estas proteínas para futura aplicação como biofármacos no Brasil. / The BMPs (Bone Morphogenetic Proteins) are members of the TGF-β (Transforming Growth Factor β) superfamily of proteins, regulate growth and differentiation of various cell types in various tissues, and some play a critical role in differentiation of mesenchymal cells into osteoblasts. Particularly, rhBMP2 and rhBMP7, promote osteoinduction \"in vitro\" and \"in vivo\" and both proteins are used therapeutically in Orthopedics and Dentistry. The differential expression of genes during osteodifferentiation induced by rhBMP2 and rhBMP7 in C2C12 cells was analyzed through DNA microarrays, allowing the selection of 31 genes, of which 24 were validated by qPCR, 13 of which are related to transcription, four associated with cell signaling pathways and seven are associated with the extracellular matrix. Subsequent functional analysis of these genes should reveal more details on the molecular events which take place during C2C12 cells osteoblastic differentiation induced by rhBMPs In paralel, rhBMPs 2 and 7 were overexpressed in HEK293T cells and BMP7 activity to induce osteodifferentiation \"in vitro\" and bone formation \"in vivo\" was demonstrated, reinforcing the viability of our objective to produce these proteins for future application as biopharmaceuticals in Brazil.
19

Studium extracelulární části myšího receptoru Nkr-p1b přirozených zabíječských buněk pomocí NMR / NMR study of the extracellular part of the mouse Nkr-p1b receptor from natural killer cells

Skála, Kristián January 2017 (has links)
Protein Nkr-p1b is a surface receptor of cytotoxic NK cells, that mediates inhibitory signal toward the body's own cells. In this study, the ligand binding domain of the mouse protein receptor Nkr-p1b (mNkr-p1b LBD) was prepared by recombinant expression in E. coli cells. Isolated protein was subsequently used for NMR structural analysis. Prediction of protein secondary structures ratio was carried out using three different methods (CD, PSIPRED and TALOS). Results correlate well with the structure of CTLD domain, that plays a key role in ligand binding and thus to function of Nkr-p1b receptor. We managed to prepare this protein in a form suitable for NMR experiments. Based on the data obtained by NMR spectra analysis, a preliminary model of the mNkr-p1b LBD protein structure was created. However, for more precise learning of the 3D structure accurate positions of individual atoms need to be determined by other NMR spectra evaluation in the next phase. Explaining the structure of the ligand binding domain of mNkr-p1b protein could help to better understand the complex mechanism of activation of NK cell cytotoxic activity, thereby contributing to its controlled use as a therapeutic against some viral and tumor diseases.
20

A proteína ligadora dos ácidos graxos Sm14 de Schistosoma mansoni: estrutura gênica, polimorfismo, expressão heteróloga em E. coli e significado estrutural e funcional das suas formas polimórficas e mutantes / The Sm14 Schistosoma mansoni fatty acid binding protein: gene structure, polymorphism, heterologus expression in E. coli and structure-functional study of her polymorphic and mutant forms

Ramos, Celso Raul Romero 26 March 2002 (has links)
A esquistossomose é a mais importante das doenças helmínticas humanas em termos de morbidez e mortalidade. A proteína Sm14 de Schistosoma mansoni, que pertence à família de proteínas ligadoras de ácidos graxos (fatty acid-binding proteins, FABPs) (Moser et al., 1991), mostrou um bom nível de proteção (65%) contra a esquistossomose em animais experimentais (Tendler et al., 1996). No presente trabalho foram desenvolvidos sistemas de expressão que possibilitará a produção da proteína Sm14 em larga escala em E.coli. Com o intuito de conhecer a estrutura do gene da proteína Sm14, foi clonado um fragmento de DNA genômico de S. mansoni que contém a seqüência codificante da proteína Sm14. Como os outros membros da família gênica das FABP, o gene para a proteína Sm14 contém quatro \"exons\" separados por três \"introns\" de 674, 585 e 42 bp. Esta é a primeira descrição da estrutura gênica de um membro das FABP correspondente a um helminto. A Sm14 é uma proteína que pode ser potencialmente usada como vacina. Estudamos a existência de polimorfismo em duas linhagens de S. mansoni endêmicas do Brasil: LE e BH. Para a análise de polimorfismo, a ORF correspondente à proteína Sm14 foi amplificada por RT-PCR do RNA total de vermes adultos de S. mansoni. Os produtos de amplificação independentes foram clonados no vetor pGEM-T e seqüenciados. As análises de seqüências mostraram duas isoformas principais para a proteína Sm14: Sm14-M20, com seqüência idêntica a proteína Sm14 previamente reportada para a linhagem de Puerto Rico de S. mansoni (Moser et AL., 1991), e Sm14-T20, onde o códon da Met20 (ATG) mudou para o códon de Thr (ACG) (polimorfismo M20T). Dois clones mostraram uma deleção de seqüência de aminoácidos correspondente ao \"exon\" 3 inteiro (clones ΔExon3), gerada por \"splicing\" alternativo. As outras trocas observadas acontecem em posições onde os aminoácidos são menos conservados e estão representados apenas por um único clone que podem ter sido obtidas por mutagênese na PCR. A metionina correspondente à posição 20 na Sm14 é altamente conservada nas FABP dos mais diversos organismos,e não se tem nenhuma outra proteína com treonina nesta posição. Para o estudo da estrutura e função destas isoformas, os cDNAs correspondentes foram subclonados no vetor pAE (desenvolvido no nosso laboratório), assim como o mutante M20A (Sm14-A20) construído para efeitos de comparação. A estabilidade e estrutura das proteínas recombinantes purificadas foram caracterizadas por dicroísmo circular (CD). A comparação da estrutura e termoestabilidade mostrou que as formas Sm14-T20 e Sm14-A20 são menos termoestáveis do que a Sm14-M20 (um ΔTm de aproximadamente 10°C). Porém, todas as formas de Sm14 foram capazes de ligar o DAUDA [ácido 11-(dansylamino) undecanoico] com a mesma afinidade. Para poder diferenciar as propriedades de ligação de ácidos graxos pelas isoformas, experiências de competição do deslocamento do DAUDA por ácidos graxos naturais, foram realizadas. A partir destes dados podemos assumir que a forma Sm14-M20 liga melhor todos os ácidos graxos naturais testados do que a forma Sm14-T20. Porém esta forma mantém a capacidade de ligar ácidos graxos, ao contrario do mutante Sm14-A20. Pode-se deduzir como resultado destas experiências que a proteína Sm14-M20 é mais estável e liga com maior afinidade os ácidos graxos naturais do que a forma Sm14-T20. Pelo visto, a proteína Sm14-T20 tem menos estrutura-β, porém, mantém a capacidade de ligar moléculas hidrofóbicas. Ainda é desconhecido o papel funcional do polimorfismo da proteína Sm14 no metabolismo dos vermes de S. mansoni. Problemas de estabilidade da proteína Sm14 recombinante, durante seu transporte e armazenamento, comprometem sua viabilidade como vacina. Com o intuito de melhorar a estabilidade desta proteína, foi feita uma mutagênese no único resíduo de cisteína presente na Sm14 na posição 62. Este resíduo é responsável pela formação de dímeros, o que é relacionado a estabilização da perda de estrutura-β e precipitação da proteína. Esta cisteína foi trocada por serina (C62S) e por valina (C62V) por mutagênese sítio dirigida, resultando nas proteínas Sm14-M20S62 e Sm14-M20V62. As formas mutantes não apresentaram maior termoestabilidade, mas a renaturação após o aquecimento a 80°C atingiu quase 100%, diferentemente das proteínas com Cys62. As proteínas com o resíduo de cisteina trocado foram as únicas formas que conservaram a estrutura de β-barril após 3 meses de armazenamento a 4°C, como mostram as análises de dicroísmo circular, sendo a forma mais estável a proteína Sm14-M20V62. Após estes estudos, a isoforma Sm14-M20 com a mutação C62V (Sm14-M20V62) mostrou-se como a melhor alternativa ao antígeno Sm14-T20 usado até agora como modelo de vacina experimental para S. mansoni. Esta indicação deve ser confirmada em ensaios de imunização e posterior desafio com cercárias de S. mansoni. / The schistosomiasis is the most important human helmintic disease in terms of morbidity and mortality. The Sm14 protein of Schistosoma mansoni belongs to the family of fatty acid-binding proteins (FABPs) (Moser et aI. , 1991) and showed a good protection level as vaccine antigen against the schistosomiasis in experimental animals (Tendler et al., 1996). In the present work were developed systems for the expression of Sm14 protein that will facilitate its large scale production in E.coli.. In order to know the gene structure of the Sm14 protein, we amplified by PCR a genomic DNA fragment of S. mansoni that contains the coding sequence for the Sm14 protein. As the other members of the FABP family, the Sm14 gene contains four exons separated by three introns of 674,585 and 42 bp, respectively. This is the first detailed description of the genomic structure for a member of FABPs corresponding to a helmint. We also studied the existence of polymorphisms within two Brazilian endemic strains of S.mansoni: LE and BH. For the polymorphism analysis, the ORF corresponding to the Sm14 protein was amplified by RT-PCR from total RNA of S. mansoni adult worms. The independent amplified products were cloned into pGEM-T vector and sequenced. The sequence analyses showed two main isoforms: Sm14-M20, with identical sequence to that previously reported Sm14 protein from the Puerto Rican strain of S. mansoni (Moser et al., 1991), and Sm14-T20, where the codon for Met20 (ATG) was changed for the Thr codon (ACG) (M20T polymorphism). Two clones showed the same amino acid sequence deletion corresponding to the whole third exon (ΔExon3 clones), generated by alternative splicing. The other observed changes occurred in positions where the amino acids were less conserved and were just represented by only one clone that could be obtained by PCR mutagenesis. The methionine corresponding to the position 20 in Sm14 is highly conserved among FABPs and no other related protein has threonin in this position. To study the structure and function of these amino acid in the isoforms, the corresponding cDNAs were subcloned in to the pAE vector (developed in our laboratory), as well as the mutant M20A (Sm14-A20). The stability and structure of the purified recombinant proteins were characterized by circular dicroism (CD). The comparison of their structure and thermo stability showed that the forms Sm14-T20 and Sm14-A20 are less thermostable than Sm14-M20 (ΔTm around 10ºC). However, all of the Sm14 forms were capable to bind the DAUDA [11- (dansylamine) undecanoic acid] with similar affinities. To differentiate the fatty acid binding properties of Sm14 isoforms, displacement experiments of DAUDA with natural fatty acid were performed. From these data we can assume that the Sm14-M20 form binds better than the Sm14-T20 and Sm14-A20 forms of all natural fatty acid assayed. This suggests that the Sm14-20 protein is most stable and binds better the natural fatty acids than the Sm14-T20 form. Although the Sm14-T20 protein has less structure, it maintains the capacity to bind fatty acids. It is still unknown the functional role of this Sm14 protein polymorphism in the metabolism of S. mansoni worms. Stability problems of the recombinant Sm14 protein during its transport and storage, could hamper its use as vaccine. With the aim to improve the stability of this protein, it was made a mutagenese at the unique cysteine residue present in Sm14 at the position 62. This residue is responsible for the dimer formation and is related the loss of the terciary structure and precipitation of the protein. This cysteine was changed by serine (C62S) and for valine (C62V) by site directed mutagenesis, resulting in the proteins Sm14-M20S62 and Sm14-M20V62. The mutant forms did not present a higher thermal stability but the renaturation after heating at 80°C almost reached 100%, in contrast to Sm14 proteins with Cys62. These mutants conserved the β-barrel structure after 3 months of storage at 4°C, in contrast to proteins with Cys62, as shown by circular dicroism analyses. After these studies, the Sm14-M20 isoform with the C62V mutation (Sm14-M20V62) was considered the best alternative to the antigen Sm14-T20 used up to now as the model for an experimental vaccine for S. mansoni. This indication should be confirmed by immunization and posterior challenge with S. mansoni cercaria.

Page generated in 0.1425 seconds