• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2527
  • 81
  • 48
  • 37
  • 37
  • 37
  • 28
  • 21
  • 20
  • 20
  • 19
  • 9
  • 2
  • Tagged with
  • 2670
  • 2670
  • 1480
  • 1217
  • 996
  • 959
  • 799
  • 462
  • 434
  • 315
  • 268
  • 259
  • 243
  • 209
  • 205
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Plasticidade e homeostase em redes neurais recorrentes / Plasticity ad homeostasis in recurrent neural networks

Mizusaki, Beatriz Eymi Pimentel January 2017 (has links)
A estrutura plástica do cérebro tem a capacidade de se adaptar a diversas condições e estímulos. No entanto, isso também pode facilitar a emergência de instabilidades, o que acarreta na necessidade de mecanismos de homeostase que previnam que a dinâmica da rede neural chegue a estados patológicos. A plasticidade associativa é considerada a principal base para o desenvolvimento de funções como memória e aprendizado, a realimentação positiva potencialmente leva à saturação de sinapses e instabilidades de atividade, especialmente em arquiteturas om conectividades recorrentes tais como em microcircuitos cerebrais. Neste trabalho investigamos a difícil interação entre a codificação de informação e o controle da atividade através da plasticidade Hebbiana e do escalonamento sináptico homeostático. O objetivo é a determinação de propriedades, como por exemplo a inibição e a conectividade, que proporcionam o desenvolvimento de codificação de informação de uma maneira confiável e fisiologicamente relevante através de plasticidade sináptica, prevenindo comportamento patológico. Após uma breve revisão bibliográfica de tópicos básicos da neurofisiologia e da modelagem de redes neurais, a primeira parte dos resultados apresenta uma rede que, sob uma forma específica de esc alonamento sináptico, desenvolve associatividade de padrões de disparo espaço-temporais e discute a afetação da capacidade de separação e confiabilidade de acordo om escalas de tempo de plasticidade, limitações sobre a eficácia sináptica e a dinâmica das interações inibitórias. A segunda parte define condições para manter o escalonamento sináptico homeostático sem instabilidades dinâmicas, om foco em fenômenos pouco explorados, como o escalonamento de sinapses inibitórias e o alcance efetivo da plasticidade. Em direção a outros mecanismos que podem influenciar esse balanço, a última parte descreve os efeitos do local de expressão da plasticidade de longa duração sobre a dinâmica de aprendizado, o que é demonstrado diferir de acordo om a codificação do estímulo.
302

Modelagem estocástica de neurônios e sua interação em tempo real com neurônios biológicos / Stochastic neural modelling and interfacing neurons and models in real-time

Carelli, Pedro Valadão 29 May 2008 (has links)
Desenvolvemos um modelo estocástico da atividade elétrica de um neurônio motor do gânglio estomatogástrico de crustáceos, a partir de um modelo determinístico eletrofisiologicamente plausível. Com isso recuperamos características da dinâmica neural sempre observadas em neurônios isolados, tais como irregularidades nos padrões de disparos que não são reproduzidas pelo modelo determinístico original. Implementamos otimizações e simplificações no método numérico de simulação estocástica que permitiram rodar a simulação em tempo real para interagir modelos computacionais com neurônios biológicos, implementando sinapses artificiais entre eles. Por fim utilizamos o modelo e os métodos de simulação desenvolvidos para substituir neurônios do gânglio estomatogástrico e construir sistemas híbridos, que foram usados para verificar como ocorre a transmissão de informação entre neurônios biológicos e artificiais, quando a dinâmicas destes é estocástica ou determinística. / We developed a mathematical model of the electrical activity of a motor neuron from the stomatogastric ganglion of crustaceans. It was inspired on a previous existing deterministic model which is considered as electrophysiologically plausible in the recent literature. However, this deterministic model were not able to reproduce the irregular bursting behavior found in those biological neurons when isolated from the neural circuit. Our model, based on the microscopic stochastic behavior of the membrane ion channels, successfully reproduced the intrinsic irregular properties that were missing in the original deterministic model. To allow the real time performing of the stochastic model simulations we have to deal with some simplifications and to implement several optimizations that are also describe in detail. The real time version of our stochastic model was implemented in a dynamic clamp protocol to interface the computational model to real neurons. Finally, we applied the implemented versions of real time simulation and interfacing protocols to replace some biological bursting neurons of the stomatogastric ganglion. These hibrid neural networks were used to study how the information (diferent patterns of interspike intervals) is transmitted between biological and two types of artificial neurons: deterministic and stochastic.
303

Análise da produtividade e das variáveis biométricas do rabanete sob diferentes lâminas de irrigação com água tratada magneticamente utilizando modelagem neuro-fuzzy /

Ferrari, Jéssica Maiara de Souza, 1991. January 2018 (has links)
Orientador: Camila Pires Cremasco Gabriel / Banca: Daniel dos Santos Viais Neto / Banca: Raul Andres Mertinez Uribe / Resumo: O rabanete é um dos vegetais mais antigos, tendo origem nas regiões mediterrâneas. A irrigação da cultura geralmente é feita com água proveniente de fontes superficiais, muitas vezes com qualidade inferior ao perfil utilizado mais comumente, contendo uma alta concentração de sais dissolvidos. O presente trabalho teve como finalidade, investigar a possibilidade de elaborar modelagens neuro fuzzy para estimativa do desenvolvimento e produtividade do rabanete, quando submetido a irrigação com água convencional e tratada magneticamente sob diferentes lâminas de irrigação, baseados na evapotranspiração da cultura (ETc). Os dados utilizados para alimentar o sistema foram provenientes de experimento realizado em ambiente protegido, localizado no Departamento de Engenharia Rural da UNESP, Faculdade de Ciências Agronômicas (FCA), Fazenda Experimental Lageado, no município de Botucatu/SP. O delineamento experimental foi inteiramente casualizado 2x5, com cinco lâminas de irrigação (25%; 50%; 75%, 100% e 125% da ETc), com água em duas condições (magnetizada e convencional) e cinco repetições de plantas. Para isto, o trabalho foi dividido em 4 capítulos, em que utiliza-se o modelo hibrido para estimativa da produtividade e fatores biométricos do rabanete, utilizando dados aferidos 35 dias após transplantio. As variáveis de entrada foram: Lâmina de Irrigação e Característica da Água (convencional ou magnetizada), e as variáveis de saída selecionadas foram: Produtividade e as Análises Biomé... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The radish is one of the oldest vegetables, originating in the Mediterranean regions. Culture irrigation is usually done with water from surface sources, often of inferior quality to the profile most commonly used, containing a high concentration of dissolved salts. The present work had the purpose of investigating the possibility of elaborating neuro fuzzy models to estimate radish development and productivity, when submitted to irrigation with conventional water and magnetically treated under different irrigation slides based on crop evapotranspiration (ETc). The data used to feed the system came from an experiment carried out in a protected environment, located in the Department of Rural Engineering of UNESP, Faculty of Agronomic Sciences (FCA), Experimental Farm Lageado, in the city of Botucatu / SP. The experimental design was completely randomized 2x5, with five irrigation slides (25%, 50%, 75%, 100% and 125% of ETc), with water in two conditions (magnetized and conventional) and five replicates of plants. For this, the work was divided in 4 chapters, using the hybrid model to estimate the productivity and biometric factors of the radish, using data verified 35 days after transplanting. The input variables were: Irrigation Blade and Water Characteristic (conventional or magnetized), and the selected output variables were: Productivity and Biometric Analysis. The models were satisfactory, and also allowed to visualize results at intermediate levels, not only those that were already performed in the experiment, formalizing a generalization of the results of the ... / Mestre
304

Aplicação de redes neurais artificiais no controle eficiente do motor de indução trifásico

Felix dos Santos, Arineu 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T17:37:02Z (GMT). No. of bitstreams: 2 arquivo5310_1.pdf: 5145392 bytes, checksum: 616b7c1ae0f6625e409080d2ccaef2bc (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2008 / O motor de indução trifásico, embora seja uma máquina intrinsecamente eficiente, pode, através de acionamento inadequado, levar a um consumo excessivo de energia, quer seja devido ao grande número de motores instalados, quer seja devido à freqüente aplicação ineficiente dos mesmos. Esta dissertação apresenta a implementação de uma técnica de controle sob orientação pelo campo que utiliza redes neurais artificiais como ferramenta auxiliar na busca de uma maior eficiência de um motor de indução trifásico com rotor em gaiola. Para esse fim, as redes neurais atuam na predição do fluxo de rotor de referência, para uma dada condição operacional, o qual é utilizado no controle direto de fluxo e conjugado, resultando, assim, na redução das perdas na máquina. As equações do modelo eletromagnético da máquina de indução, com inclusão da saturação magnética do ferro do núcleo, em um referencial arbitrário, bem como o estimador de fluxo de rotor são descritos. Simulações digitais são utilizadas para criação do banco de dados, treinamento e escolha das melhores arquiteturas das redes neurais, além do estudo do comportamento do sistema acionado para diversas condições de velocidade e de carga. Por fim, são apresentados os resultados experimentais e avaliado o desempenho das redes neurais e sua influência sobre o consumo de energia pelo motor de indução
305

Sistemas inteligentes e wavelets para previsão de vento e geração eólica

OLIVEIRA, Josinaldo Bezerra de 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T17:37:49Z (GMT). No. of bitstreams: 2 arquivo5358_1.pdf: 2371419 bytes, checksum: 9e35f2575d714f7e248df41f035db1da (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2008 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Vários estudos já comprovaram que o potencial eólico brasileiro, principalmente no nordeste, onde os ventos têm uma importante característica de complementaridade em relação às vazões do rio São Francisco, pode contribuir significativamente para o suprimento de energia elétrica. O aproveitamento deste potencial eólico aumentaria a capacidade de geração e a diversificação da matriz energética nacional e, consequentemente, diminuiria os riscos de desabastecimento de energia elétrica. Entretanto, o uso das forças dos ventos para produção de energia produz alguns inconvenientes, tais como, a incertezas na geração e a dificuldade no planejamento e operação do sistema elétrico. Portanto, é imprescindível à aplicação de ferramentas ou técnicas capazes de predizer a energia a ser fornecida por estas fontes. No Brasil, os investimentos em fontes alternativas iniciaram-se de forma tímida e tardia, inclusive em geração eólica. Do ponto de vista de modelos de previsões de ventos e geração eólica, isto não é diferente. Sendo assim, este trabalho propõe e desenvolve vários modelos de previsões a partir de técnicas de Redes Neurais Artificiais; Análise de Multiresolução de sinais usando Transformada Wavelet; e Modelos Estatísticos. Os modelos aqui propostos foram ajustados para realizar previsões com horizontes variáveis de até vinte e quatro horas. Estes serviram para uma análise comparativa através dos resultados encontrados durante os testes dos mesmos, que ajudou a identificar as vantagens e desvantagens de cada técnica. Além disto, estes poderão ser implementados e desenvolvidos para operação, mitigando alguns dos inconvenientes da geração eólica de energia
306

Modelos de previsão de carga elétrica em curto prazo desenvolvidos com redes neurais artificiais e lógica Fuzzy considerando a variável temperatura

Maria Andrade da Silveira, Tatiana 31 January 2010 (has links)
Made available in DSpace on 2014-06-12T17:38:10Z (GMT). No. of bitstreams: 2 arquivo5618_1.pdf: 3048249 bytes, checksum: 5404a746aa7aac46d2fad86ada13af25 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2010 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / O conhecimento prévio do comportamento do consumo de energia é de grande importância para uma distribuidora de energia. Com base nesta informação, é possível definir estratégias para operação e planejamento de seu sistema elétrico, além de possibilitar o acompanhamento da relação entre contratos e consumo de energia, evitando com isso a ocorrência de penalidades. O consumo de energia é influenciado por diversas variáveis. Notadamente, em horizontes de curto prazo o consumo de energia é influenciado por variáveis climáticas, como temperatura e precipitação. Este trabalho apresenta modelos que utilizam a temperatura como variável de entrada para solucionar o problema de previsão de carga diária no horizonte de curto prazo, realizada em 7 e 14 dias para um conjunto de barramentos do sistema de distribuição da CELPE Companhia Energética de Pernambuco. As técnicas aplicadas no desenvolvimento dos modelos de previsão foram: Redes Neurais Artificiais com topologia de MLP (Multi Layer Perceptrons) totalmente conectadas e treinadas com algoritmo Levenberg-Marquardt; e ANFIS (Adaptive Networkbased Fuzzy Inference System) com o método subctrative clustering . Os métodos Média Simples e Ensemble foram aplicados para combinação dos resultados dos modelos propostos. Os modelos criados foram avaliados para previsão de carga do ano de 2009 e comparados entre si. Os resultados encontrados demonstram que os modelos apresentaram performances satisfatórias
307

Avaliação do desempenho de classificadores neurais para aplicações em sensoriamento remoto

Todt, Viviane January 1998 (has links)
Atualmente, pesquisadores das mais diversas áreas, tais como: Geologia, Física, Cartografia, Oceanografia, entre outras, utilizam imagens de satélite como uma fonte valiosa para a extração de informações sobre a superfície terrestre. Muitas vezes, a análise (classificação) destas imagens é realizada por métodos tradicionais sejam eles supervisionados (como o Método de Máxima Verossimilhança Gaussiana) ou nãosupervisionados (como o Método de Seleção pelo Pico do Histograma). Entretanto, pode-se utilizar as Redes Neurais Artificiais como uma alternativa para o aumento da acurácia em classificações digitais. Neste trabalho, utilizou-se imagens multi-espectrais do satélite LANDSAT 5-TM para a identificação de espécies vegetais (Mata Nativa, Eucalyptus e Acácia) em uma região próxima aos municípios de General Câmara, Santo Amaro e Taquari, no Estado do Rio Grande do Sul, Brasil. Comparou-se qualitativamente e quantitativamente os resultados obtidos pelo método de Máxima Verossimilhança Gaussiana e por uma Rede Neural Artificial Multinível com BackPropagation na classificação da área de estudo. Para tanto, parte desta área foi mapeada através de uma verificação de campo e com o auxílio de classificadores nãosupervisionados (Kohonen, que é uma Rede Neural, e o método de Seleção pelo Pico do Histograma). Com isto, foi possível coletar dois conjuntos de amostras, sendo que um deles foi utilizado para o treinamento dos métodos e o outro (conjunto de reconhecimento) serviu para a avaliação das classificações obtidas. Após o treinamento, parte da área de estudo foi classificada por ambos os métodos. Em seguida, os resultados obtidos foram avaliados através do uso de Tabelas de Contingência, considerando um nível de significância de 5%. Por fim, na maior parte dos testes realizados, a Rede Neural Artificial Multinível com BackPropagation apresentou valores de acurácia superiores ao Método de Máxima Verossimilhança Gaussiana. Assim, com este trabalho observou-se que não há diferença significativa de classificação para as espécies vegetais, ao nível de 5%, para a área de estudo considerada, na época de aquisição da imagem, para o conjunto de reconhecimento.
308

Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos

Campos, Tatiane Jesus de January 2001 (has links)
Sistemas de visão artificial são cada vez mais usados para auxiliar seres humanos a realizar diferentes tarefas. Estes sistemas são capazes de reconhecer padrões em imagens complexas. Técnicas de visão computacional têm encontrado crescente aplicação em estudos e sistemas de controle e monitoração de tráfego de automóveis. Uma das áreas de pesquisa que tem sido objeto de estudo por diferentes grupos é a leitura automática de placas de matrículas como forma de detectar transgressores, encontrar carros roubados ou efetuar estudos de origem/destino [BAR99]. Com o constante crescimento do volume de tráfego de automóvel e a limitada capacidade dos sensores convencionais, especialistas da área recorrem a técnicas de identificação automática de veículos para obter dados relativos ao escoamento de tráfego. A identificação automática de veículos tem tido essencialmente duas abordagens distintas: a utilização de transponders e a utilização de técnicas de visão computacional [INI85] . Estas são essencialmente úteis em casos em que não é viável obrigar os motoristas a instalar transponders em seus automóveis. No entanto, essas técnicas são mais sensíveis às condições atmosféricas e de iluminação tais como nevoeiros, chuva intensa, luz noturna, reflexos em superfícies, etc. Este trabalho apresenta um estudo de diversas técnicas de processamento de imagem objetivando o aperfeiçoamento de um sistema de identificação automática de placas de veículos. Este aperfeiçoamento está relacionado com a diminuição do tempo de execução necessário à localização e reconhecimento dos caracteres contidos nas placas dos veículos bem como a melhorar a taxa de sucesso no seu reconhecimento. A primeira versão do sistema de identificação da placas de veículos descrito em [SOU2000], desenvolvido no CPG-EE da UFRGS, denominado SIAV 1.0, localiza e extrai 91,3% das placas corretamente mas apresenta uma taxa de reconhecimento das placas de 37,3%, assim como um tempo de processamento não satisfatório. Neste trabalho, cujo sistema desenvolvido é denominado SIAV 2.0, a imagem é previamente processada através da aplicação de técnicas de realce da imagem. O principal objetivo das técnicas de realce é processar a imagem de modo que o resultado seja mais apropriado para uma aplicação específica do que a imagem original [GON93]. O sistema busca melhorar a qualidade da imagem eliminando ou suavizando sombras e reflexos presentes na cena em virtude da iluminação não controlada. Visando um menor tempo de execução durante o tratamento e análise da imagem um estudo estatístico baseado na distribuição gaussiana foi realizado de maneira a restringir a área de análise a ser processada. O SIAV possui duas redes neurais como ferramentas de reconhecimento de caracteres. A partir da análise dos diferentes modelos de redes neurais empregados na atualidade, foi desenvolvida uma nova arquitetura de rede a ser utilizada pelo SIAV 2.0 que oferece uma taxa de reconhecimento superior a rede neural usada no SIAV 1.0. Visando um melhor tempo de execução, a implementação em hardware dedicado para este modelo é abordado. Os testes foram realizados com três bancos de imagens obtidas por câmeras diferentes, inclusive por dispositivo "pardal" comercial. Estes testes foram realizados para verificar a efetividade dos algoritmos aperfeiçoados.
309

Caracterização de microorganismos aquáticos por processamento digital de imagens e redes neurais artificiais

Santos, Sonia Magalhaes dos January 2001 (has links)
A identificação e o monitoramento de microorganismos aquáticos, como bactérias e microalgas, tem sido uma tarefa árdua e morosa. Técnicas convencionais, com uso de microscópios e corantes, são complexas, exigindo um grande esforço por parte dos técnicos e pesquisadores. Uma das maiores dificuldades nos processos convencionais de identificação via microscopia é o elevado número de diferentes espécies e variantes existentes nos ambientes aquáticos, muitas com semelhança de forma e textura. O presente trabalho tem por objetivo o desenvolvimento de uma metodologia para a caracterização e classificação de microorganismos aquáticos (bactérias e microalgas), bem como a determinação de características cinemáticas, através do estudo da mobilidade de microalgas que possuem estruturas que permitem a natação (flagelos). Para caracterização e reconhecimento de padrões as metodologias empregadas foram: o processamento digital de imagens e redes neurais artificiais (RNA). Para a determinação da mobilidade dos microorganismos foram empregadas técnicas de velocimetria por processamento de imagens de partículas em movimento (Particle Tracking Velocimetry - PTV). O trabalho está dividido em duas partes: 1) caracterização e contagem de microalgas e bactérias aquáticas em amostras e 2) medição da velocidade de movimentação das microalgas em lâminas de microscópio. A primeira parte envolve a aquisição e processamento digital de imagens de microalgas, a partir de um microscópio ótico, sua caracterização e determinação da densidade de cada espécie contida em amostras. Por meio de um microscópio epifluorescente, foi possível, ainda, acompanhar o crescimento de bactérias aquáticas e efetuar a sua medição por operadores morfológicos. A segunda parte constitui-se na medição da velocidade de movimentação de microalgas, cujo parâmetro pode ser utilizado como um indicador para se avaliar o efeito de substâncias tóxicas ou fatores de estresse sobre as microalgas. O trabalho em desenvolvimento contribuirá para o projeto "Produção do Camarão Marinho Penaeus Paulensis no Sul do Brasil: Cultivo em estruturas Alternativas" em andamento na Estação Marinha de Aquacultura - EMA e para pesquisas no Laboratório de Ecologia do Fitoplâncton e de Microorganismos Marinhos do Departamento de Oceanografia da FURG. O trabalho propõe a utilização dos níveis de intensidade da imagem em padrão RGB e oito grandezas geométricas como características para reconhecimento de padrões das microalgas O conjunto proposto de características das microalgas, do ponto de vista de grandezas geométricas e da cor (nível de intensidade da imagem e transformadas Fourier e Radon), levou à geração de indicadores que permitiram o reconhecimento de padrões. As redes neurais artificiais desenvolvidas com topologia de rede multinível totalmente conectada, supervisionada, e com algoritmo de retropropagação, atingiram as metas de erro máximo estipuladas entre os neurônios de saída desejados e os obtidos, permitindo a caracterização das microalgas.
310

Aplicação da rede GTSOM para navegação de robôs móveis utilizando aprendizado por reforço / Using the GTSOM network for mobile robot navigation with reinforcement learning

Menegaz, Mauricio January 2009 (has links)
Neste trabalho será descrita uma arquitetura de agente robótico autônomo projetada para ser capaz de criar uma representação de estado do ambiente e de realizar o aprendizado de tarefas simples em cima desta representação. A rede GTSOM (BASTOS, 2007) foi selecionada como método para classificação de estados. Sua tarefa é transformar os dados multidimensionais e contínuos lidos dos sensores em uma representação discreta, permitindo o uso de aprendizado por reforço convencional. Algumas modificações no algoritmo da rede foram necessárias para que pudesse ser aplicada neste contexto. Juntamente com esta rede, foi utilizado um mapa de grade que permite associar as experiências sensoriais com sua localização espacial. Enquanto a rede GTSOM é o ponto central de um sistema de classificação de estados, o algoritmo Q-Learning de aprendizado por reforço foi utilizado para a realização da tarefa. Utilizando a representação compacta de estado criada pela rede auto-organizável, o agente aprende as ações que devem ser executadas em cada ponto, para atingimento de seus objetivos. O modelo foi testado com um experimento que consiste em encontrar um objeto em um labirinto. Os resultados obtidos nos testes mostraram que o modelo consegue segmentar adequadamente o espaço de estados, e realiza o aprendizado da tarefa. O agente consegue aprender a evitar colisões e memorizar a localização do alvo, podendo chegar até ele independentemente de sua posição inicial. Além disso, é capaz de expandir sua representação sempre que se depara com situações não conhecidas, ao mesmo tempo que gradualmente remove da memória estados associados a experiências que não se repetem. / This work describes an architecture for an autonomous robotic agent that is capable of creating a state representation of its environment and learning how to execute simple tasks using this representation. The GTSOM Neural Network was chosen as the method for state clustering. It is used to transform the multidimensional and continuous state signal into a discrete representation, allowing the use of conventional reinforcement learning techniques. Some modifications on the algorithm were necessary so that it could be used in this project. This network is used together with a grid map algorithm that allows the model to associate the sensor readings with the places where they ocurred. While the GTSOM network is the main component of a state clustering system, the Q-Learning reinforcement learning method was chosen for the task execution. Using the compact state representation created by the self-organizing network, the agent learns which actions to execute at each state in order to achieve its objectives. The model was tested in an experiment that consists in finding the path in a maze. The results show that it can divide the state space in an useful way, and is capable of executing the task. It learns to avoid collisions and remembers the location of the target, even when the robot’s initial position is changed. Furthermore, the representation is expanded when the agent faces an unknown situation, and at the same time, states associated with old experiences are forgotten.

Page generated in 0.085 seconds