• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas

Romaguera, Liset Várquez 17 April 2017 (has links)
Submitted by Erika Maciel (erika.sh@hotmail.com) on 2017-06-22T15:29:09Z No. of bitstreams: 2 Dissertação_Liset.pdf: 4433156 bytes, checksum: e6e4af788c528efbb8938587f74f4d6d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-06-23T13:09:13Z (GMT) No. of bitstreams: 2 Dissertação_Liset.pdf: 4433156 bytes, checksum: e6e4af788c528efbb8938587f74f4d6d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-06-23T13:09:35Z (GMT) No. of bitstreams: 2 Dissertação_Liset.pdf: 4433156 bytes, checksum: e6e4af788c528efbb8938587f74f4d6d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-06-23T13:09:36Z (GMT). No. of bitstreams: 2 Dissertação_Liset.pdf: 4433156 bytes, checksum: e6e4af788c528efbb8938587f74f4d6d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-04-17 / CAPES / Cardiovascular diseases are the leading cause of death worldwide. Noninvasive cardiac imaging technologies, such as magnetic resonance, are essential tools to support the diagnosis and monitoring of various pathologies. The previous step for the extraction of cardiac function indicators is the endocardium and epicardium contours segmentation in the left ventricular cavity. This process often is performed manually by the specialists, which requires a lot of time and effort, and is prone to intra and inter-observer errors. This dissertation develops an automatic methodology based on a fully convolutional neural network to segment the myocardium in short axis cardiac magnetic resonance images. The database used is divided into 10 sets for training and testing purposes. Six optimization methods are evaluated: stochastic gradient descend, Nesterov accelerated gradient, RMSProp, Adam, AdaDelta and AdaGrad. The best results were achieved with the stochastic gradient descend and RMSProp. With the former, a Dice coefficient of 0.9055 and 0.9146, Hausdorff distance of 10.5244 and 10.7240, sensitivity of 0.9263 and 0.9135, specificity of 0.9985 and 0.9986 were obtained for endocardium and epicardium, respectively. With RMSProp, a Dice coefficient of 0.9098 and 0.9167, Hausdorff distance of 9.0421 and 9.7663, sensitivity of 0.9200 and 0.9116, specificity of 0.9988 and 0.9987 were obtained for endocardium and epicardium, respectively. / As doenças cardiovasculares são a principal causa de morte a nível mundial. As tecnologias não invasivas de imageamento cardíaco, tais como a ressonância magnética, são ferramentas essenciais de apoio ao diagnóstico e monitoramento de diversas patologias. Um passo fundamental para a extração dos indicadores da função cardíaca é a segmentação dos contornos do endocárdio e do epicárdio na cavidade ventricular esquerda. Este processo, a maioria das vezes, é realizado manualmente pelos especialistas, o qual exige muito tempo e esforço, além de que é propenso a erros intra e inter-observadores. Esta dissertação desenvolve uma metodologia automática baseada em uma rede neural totalmente convolutiva para segmentar o miocárdio em imagens do eixo curto de ressonância magnética cardíaca. O banco de imagens utilizado é dividido em 10 conjuntos para propósitos de treinamento e teste. São avaliados seis métodos de otimização, a saber, o gradiente descendente estocástico, o gradiente acelerado de Nesterov, o RMSProp, o Adam, o AdaDelta e o AdaGrad. Os melhores resultados foram alcançados com o gradiente descendente estocástico e com o RMSProp. Com o gradiente descendente estocástico foi obtido um coeficiente Dice de 0,9055 e 0,9146, distância de Hausdorff de 10,5244 e 10,7240, sensibilidade de 0,9263 e 0,9135, especificidade de 0,9985 e 0,9986, para o endocárdio e epicárdio, respectivamente. Com o RMSProp foi obtido um coeficiente Dice de 0,9098 e 0,9167, distância de Hausdorff de 9,0421 e 9,7663, sensibilidade de 0,9200 e 0,9116, especificidade de 0,9988 e 0,9987, para o endocárdio e epicárdio, respectivamente.
2

Detecção do Mycobacterium tuberculosis em imagens de baciloscopia de campo claro utilizando redes neurais convolutivas

López, Yadini Pérez, 92-98231-6465 13 April 2018 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-08-03T12:41:19Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Yadini P. Lopez.pdf: 3876547 bytes, checksum: b6ee2f55b965310100cf0116374ef994 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-08-03T12:41:35Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Yadini P. Lopez.pdf: 3876547 bytes, checksum: b6ee2f55b965310100cf0116374ef994 (MD5) / Made available in DSpace on 2018-08-03T12:41:36Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Yadini P. Lopez.pdf: 3876547 bytes, checksum: b6ee2f55b965310100cf0116374ef994 (MD5) Previous issue date: 2018-04-13 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Tuberculosis (TB) is a disease caused by a slow-growing bacterium named Mycobacterium tuberculosis (MT). Since 2000 has been included among the top 10 leading causes of death worldwide. In 2015, Brazil ranked eighteenth in TB incidence, representing 9% and 33% of the estimated cases worldwide and for the Americas respectively. Light field smear microscopy is the most commonly used exam in developing countries for diagnosis and follow-up of the disease. Since 2008, several researches have been developed focused on TB bacillus detection, aiming the automation of light field smear microscopy. These studies used datasets with different amounts of images, explored different color aspects of bacilli, and applied Digital Image Processing and / or Machine Learning techniques, and more recently, Deep Learning using Grayscale images. However, Deep Learning techniques have not been explored using a robust smear microscopy image dataset that reflect real conditions of smear microscopy exams. This work presents a method for automatic detection of TB bacillus using Convolutional Neural Networks (CNN) using a dataset of images taken from 2 patients in RGB, R-G and Grayscale color formats. To reach the proposed goal, a patch dataset containing bacilli (positive patches) and without bacilli (negative patches) was generated. This patch dataset was used for training three different RNC architectures. Then, Non-maximum Suppression (NMS) algorithm was applied using CNN models and complete smear images for bacillus detection. Best results in the patch classification stage were obtained using R-G and RGB images and two CNN models, achieving an accuracy of 99% in both cases. At final stage, Bacilli detection in full smear images, best results were achieved using RGB images reaching a Precision of 56,82%, Recall of 86,15% and F1-score of 68,47%. / A Tuberculose (TB) é uma doença causada por uma bactéria de crescimento lento, Mycobacterium tuberculosis (MT) e desde o ano 2000 tem sido incluída entre as dez causas principais de morte a nível mundial. No ano 2015 o Brasil ocupou a 18ª posição em incidência de tuberculose, representando 9% dos casos estimados no mundo, e 33% dos estimados para as Américas. O exame de baciloscopia de campo claro é o mais utilizado em países em desenvolvimento para o diagnóstico e acompanhamento da doença. Desde o ano de 2008 têm sido desenvolvidos trabalhos pela comunidade científica focados na detecção do bacilo da TB visando a automatização da baciloscopia de campo claro. Esses estudos utilizaram bases de dados com diferentes quantidades de imagens, exploraram aspectos de cor dos bacilos e aplicaram técnicas de Processamento Digital de Imagens e/ou Aprendizado de Máquina, e mais recentemente Aprendizado de Máquina Profundo. Entretanto, verificou-se que técnicas de Aprendizado de Máquina Profundo não têm sido exploradas utilizando bases de dados de imagens de baciloscopia robustas que refletem as condições reais dos exames de baciloscopia de campo claro. O presente trabalho visa o desenvolvimento de um método de detecção automática do bacilo da TB mediante a utilização de Redes Neurais Convolutivas (RNC), utilizando conjuntos de imagens baciloscópicas de 2 pacientes nos formatos de cor RGB, R-G e Escala de Cinza. Para atingir o objetivo proposto, foi gerada uma base de dados de patches contendo bacilos (positivos) e patches sem bacilos (negativos), os quais foram utilizados no treinamento de três arquiteturas diferentes de RNC. Posteriormente, foi aplicado o algoritmo Non-maximum Suppression utilizando imagens completas de baciloscopia para detectar cada bacilo. Os melhores resultados na etapa de classificação de patches foram obtidos utilizando as imagens de baciloscopia R-G e RGB e dois modelos RNC de duas e três camadas convolutivas, alcançando uma acurácia de 99%. Na etapa final de detecção dos bacilos nas imagens completas de baciloscopia os melhores resultados foram alcançados utilizando as imagens no formato RGB atingindo um Precision de 56,82%, um Recall de 86,15% e um F1-score de 68,47%.
3

SlimRank: um modelo de seleção de respostas para perguntas de consumidores / SlimRank: an answer selection model for consumer questions

Criscuolo, Marcelo 16 November 2017 (has links)
A disponibilidade de conteúdo gerado por usuários em sites colaborativos de perguntas e respostas tem impulsionado o avanço de modelos de Question Answering (QA) baseados em reúso. Essa abordagem pode ser implementada por meio da tarefa de seleção de respostas (Answer Selection, AS), que consiste em encontrar a melhor resposta para uma dada pergunta em um conjunto pré-selecionado de respostas candidatas. Nos últimos anos, abordagens baseadas em vetores distribucionais e em redes neurais profundas, em particular em redes neurais convolutivas (CNNs), têm apresentado bons resultados na tarefa de AS. Contudo, a maioria dos modelos é avaliada sobre córpus de perguntas objetivas e bem formadas, contendo poucas palavras. Raramente estruturas textuais complexas são consideradas. Perguntas de consumidores, comuns em sites colaborativos, podem ser bastante complexas. Em geral, são representadas por múltiplas frases inter-relacionadas, que apresentam pouca objetividade, vocabulário leigo e, frequentemente, contêm informações em excesso. Essas características aumentam a dificuldade da tarefa de AS. Neste trabalho, propomos um modelo de seleção de respostas para perguntas de consumidores. São contribuições deste trabalho: (i) uma definição para o objeto de pesquisa perguntas de consumidores; (ii) um novo dataset desse tipo de pergunta, chamado MilkQA; e (iii) um modelo de seleção de respostas, chamado SlimRank. O MilkQA foi criado a partir de um arquivo de perguntas e respostas coletadas pelo serviço de atendimento de uma renomada instituição pública de pesquisa agropecuária (Embrapa). Anotadores guiados pela definição de perguntas de consumidores proposta neste trabalho selecionaram 2,6 mil pares de perguntas e respostas contidas nesse arquivo. A análise dessas perguntas levou ao desenvolvimento do modelo SlimRank, que combina representação de textos na forma de grafos semânticos com arquiteturas de CNNs. O SlimRank foi avaliado no dataset MilkQA e comparado com baselines e dois modelos do estado da arte. Os resultados alcançados pelo SlimRank foram bastante superiores aos resultados dos baselines, e compatíveis com resultados de modelos do estado da arte; porém, com uma significativa redução do tempo computacional. Acreditamos que a representação de textos na forma de grafos semânticos combinada com CNNs seja uma abordagem promissora para o tratamento dos desafios impostos pelas características singulares das perguntas de consumidores. / The increasing availability of user-generated content in community Q&A sites has led to the advancement of Question Answering (QA) models that relies on reuse. Such approach can be implemented by the task of Answer Selection (AS), which consists in finding the best answer for a given question in a pre-selected pool candidate answers. Recently, good results have been achieved by AS models based on distributed word vectors and deep neural networks that are used to rank answers for a given question. Convolutinal Neural Networks (CNNs) are particularly succesful in this task. Most of the AS models are built over datasets that contains only short and objective questions expressed as interrogative sentences containing few words. Complex text structures are rarely considered. However, consumer questions may be really complex. This kind of question is the main form of seeking information in community Q&A sites, forums and customer services. Consumer questions have characteristics that increase the difficulty of the answer selection task. In general, they are composed of multiple interrelated sentences that are usually subjective, and contains laymans terms and excess of details that may be not particulary relevant. In this work, we propose an answer selection model for consumer questions. Specifically the contributions of this work are: (i) a definition for the consumer questions research object; (ii) a new dataset of this kind of question, which we call MilkQA; and (iii) an answer selection model, named SlimRank. MilkQA was created from an archive of questions and answers collected by the customer service of a well-known public agricultural research institution (Embrapa). It contains 2.6 thousand question-answer pairs selected and anonymized by human annotators guided by the definition proposed in this work. The analysis of questions in MilkQA led to the development of SlimRank, which combines semantic textual graphs with CNN architectures. SlimRank was evaluated on MilkQA and compared to baselines and two state-of-the-art answer selection models. The results achieved by our model were much higher than the baselines and comparable to the state of the art, but with significant reduction of computational time. Our results suggest that combining semantic text graphs with convolutional neural networks are a promising approach for dealing with the challenges imposed by consumer questions unique characteristics.
4

SlimRank: um modelo de seleção de respostas para perguntas de consumidores / SlimRank: an answer selection model for consumer questions

Marcelo Criscuolo 16 November 2017 (has links)
A disponibilidade de conteúdo gerado por usuários em sites colaborativos de perguntas e respostas tem impulsionado o avanço de modelos de Question Answering (QA) baseados em reúso. Essa abordagem pode ser implementada por meio da tarefa de seleção de respostas (Answer Selection, AS), que consiste em encontrar a melhor resposta para uma dada pergunta em um conjunto pré-selecionado de respostas candidatas. Nos últimos anos, abordagens baseadas em vetores distribucionais e em redes neurais profundas, em particular em redes neurais convolutivas (CNNs), têm apresentado bons resultados na tarefa de AS. Contudo, a maioria dos modelos é avaliada sobre córpus de perguntas objetivas e bem formadas, contendo poucas palavras. Raramente estruturas textuais complexas são consideradas. Perguntas de consumidores, comuns em sites colaborativos, podem ser bastante complexas. Em geral, são representadas por múltiplas frases inter-relacionadas, que apresentam pouca objetividade, vocabulário leigo e, frequentemente, contêm informações em excesso. Essas características aumentam a dificuldade da tarefa de AS. Neste trabalho, propomos um modelo de seleção de respostas para perguntas de consumidores. São contribuições deste trabalho: (i) uma definição para o objeto de pesquisa perguntas de consumidores; (ii) um novo dataset desse tipo de pergunta, chamado MilkQA; e (iii) um modelo de seleção de respostas, chamado SlimRank. O MilkQA foi criado a partir de um arquivo de perguntas e respostas coletadas pelo serviço de atendimento de uma renomada instituição pública de pesquisa agropecuária (Embrapa). Anotadores guiados pela definição de perguntas de consumidores proposta neste trabalho selecionaram 2,6 mil pares de perguntas e respostas contidas nesse arquivo. A análise dessas perguntas levou ao desenvolvimento do modelo SlimRank, que combina representação de textos na forma de grafos semânticos com arquiteturas de CNNs. O SlimRank foi avaliado no dataset MilkQA e comparado com baselines e dois modelos do estado da arte. Os resultados alcançados pelo SlimRank foram bastante superiores aos resultados dos baselines, e compatíveis com resultados de modelos do estado da arte; porém, com uma significativa redução do tempo computacional. Acreditamos que a representação de textos na forma de grafos semânticos combinada com CNNs seja uma abordagem promissora para o tratamento dos desafios impostos pelas características singulares das perguntas de consumidores. / The increasing availability of user-generated content in community Q&A sites has led to the advancement of Question Answering (QA) models that relies on reuse. Such approach can be implemented by the task of Answer Selection (AS), which consists in finding the best answer for a given question in a pre-selected pool candidate answers. Recently, good results have been achieved by AS models based on distributed word vectors and deep neural networks that are used to rank answers for a given question. Convolutinal Neural Networks (CNNs) are particularly succesful in this task. Most of the AS models are built over datasets that contains only short and objective questions expressed as interrogative sentences containing few words. Complex text structures are rarely considered. However, consumer questions may be really complex. This kind of question is the main form of seeking information in community Q&A sites, forums and customer services. Consumer questions have characteristics that increase the difficulty of the answer selection task. In general, they are composed of multiple interrelated sentences that are usually subjective, and contains laymans terms and excess of details that may be not particulary relevant. In this work, we propose an answer selection model for consumer questions. Specifically the contributions of this work are: (i) a definition for the consumer questions research object; (ii) a new dataset of this kind of question, which we call MilkQA; and (iii) an answer selection model, named SlimRank. MilkQA was created from an archive of questions and answers collected by the customer service of a well-known public agricultural research institution (Embrapa). It contains 2.6 thousand question-answer pairs selected and anonymized by human annotators guided by the definition proposed in this work. The analysis of questions in MilkQA led to the development of SlimRank, which combines semantic textual graphs with CNN architectures. SlimRank was evaluated on MilkQA and compared to baselines and two state-of-the-art answer selection models. The results achieved by our model were much higher than the baselines and comparable to the state of the art, but with significant reduction of computational time. Our results suggest that combining semantic text graphs with convolutional neural networks are a promising approach for dealing with the challenges imposed by consumer questions unique characteristics.
5

[en] CLASSIFICATION OF OBJECTS IN REAL CONTEXT BY CONVOLUTIONAL NEURAL NETWORKS / [pt] CLASSIFICAÇÃO DE OBJETOS EM CONTEXTO REAL POR REDES NEURAIS CONVOLUTIVAS

LUIS MARCELO VITAL ABREU FONSECA 08 June 2017 (has links)
[pt] A classificação de imagens em contexto real é o ápice tecnológico do reconhecimento de objetos. Esse tipo de classificação é complexo, contendo diversos problemas de visão computacional em abundância. Este projeto propõe solucionar esse tipo de classificação através do uso do conhecimento no aprendizado de máquina aplicado ao dataset do MS COCO. O algoritmo implementado neste projeto consiste de um modelo de Rede Neural Convolutiva que consegue aprender características dos objetos e realizar predições sobre suas classes. São elaborados alguns experimentos que comparam diferentes resultados de predições a partir de diferentes técnicas de aprendizado. É também realizada uma comparação dos resultados da implementação com o estado da arte na segmentação de objetos em contexto. / [en] The classification of objects in real contexts is the technological apex of object recognition. This type of classification is complex, containing diverse computer vision problems in abundance. This project proposes to solve that type of classification through the use of machine learning knowledge applied to the MS COCO dataset. The implemented algorithm in this project consists of a Convolutional Neural Network model that is able to learn characteristics of the objects and predict their classes. Some experiments are made that compare different results of predictions using different techniques of learning. There is also a comparison of the results from the implementation with state of art in contextual objects segmentation.

Page generated in 0.0575 seconds