• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 9
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Numerical analysis of slender elliptical concrete filled columns under axial compression

Dai, Xianghe, Lam, Dennis, Jamaluddin, N., Ye, J. January 2014 (has links)
This paper presents a non-linear finite element model (FEM) used to predict the behaviour of slender concrete filled steel tubular (CFST) columns with elliptical hollow sections subjected to axial compression. The accuracy of the FEM was validated by comparing the numerical prediction against experimental observation of eighteen elliptical CFST columns which carefully chosen to represent typical sectional sizes and member slenderness. The adaptability to apply the current design rules provided in Eurocode 4 for circular and rectangular CFST columns to elliptical CFST columns were discussed. A parametric study is carried out with various section sizes, lengths and concrete strength in order to cover a wider range of member cross-sections and slenderness which is currently used in practices to examine the important structural behaviour and design parameters, such as column imperfection, non-dimension slenderness and buckling reduction factor, etc. It is concluded that the design rules given in Eurocode 4 for circular and rectangular CFST columns may be adopted to calculate the axial buckling load of elliptical CFST columns although using the imperfection of length/300 specified in the Eurocode 4 might be over-conservative for elliptical CFST columns with lower non-dimensional slenderness.
22

Análise comparativa do efeito da distribuição espaço-tempo em eventos pluviométricos intensos na formação de vazões em bacias urbanas. / Comparative analysis of the effect of space-time distribution of heavy rainfall events in the formation of flows in urban catchments.

Girnius, Lígia de Souza 18 May 2016 (has links)
Esta pesquisa tem como finalidade discutir os impactos da variabilidade espacial e temporal de precipitações intensas nas vazões de cursos d\'água em bacias urbanizadas mediante a análise de dados históricos da pluviometria obtidos durante eventos críticos. A bacia hidrográfica do rio Tietê, em sua porção mais urbanizada, é a área objeto deste estudo. Após uma revisão sobre o tema na literatura específica, foram desenvolvidas chuvas de projeto com os padrões observados e com padrões teóricos, frequentemente utilizados na geração das tormentas sintéticas. O volume total precipitado foi associado ao período de retorno (TR) de 100 anos, a partir da análise estatística de chuvas pontuais e pela aplicação de fatores de redução de área (FRA) observados na área em estudo e de outras regiões, que vêm sendo utilizados em projetos de drenagem, sem qualquer estudo de validação; o intuito foi o de demonstrar a importância da definição de FRA específicos, a fim de evitar superdimensionamentos e otimizar as soluções. As chuvas de projeto foram aplicadas num modelo matemático de transformação chuva-vazão, devidamente calibrado, para obtenção das vazões de projeto resultantes no limite de jusante da bacia hidrográfica, frente aos diferentes padrões de solicitações hidrológicas. Para auxiliar a calibração do modelo estavam disponíveis dados dos postos telemétricos do Sistema de Alerta a Inundações de São Paulo - SAISP, curvas-chave e, para melhor representação dos eventos de precipitação observados, pode-se contar com as imagens do radar de Ponte Nova, em complementação às informações da rede de superfície. A comparação dos resultados obtidos no modelo hidrológico mostrou que os efeitos dos parâmetros variáveis (volume, distribuição espacial e temporal) são expressivos na composição dos hidrogramas de projeto. Dos testes realizados, identificaram-se as situações mais e menos críticas para a bacia, em termos de distribuição espacial e temporal e duração da chuva de projeto, além de estabelecer as diferenças no dimensionamento do sistema de drenagem pela adoção de FRA específico. Concluiu-se que, pela metodologia proposta, é possível chegar a vazões máximas de projeto apenas pela simulação de tormentas sintéticas, com diferenças de 10% a 20% das tormentas observadas maximizadas. Há, no entanto, a necessidade de realização de estudos adicionais, tanto para definição dos valores de FRA específicos, quanto de simulação de quantidade maior de padrões críticos observados, para a aplicação prática das indicações desse estudo com maior confiabilidade. / This research aims to discuss the impact of the spatial and temporal variability of heavy rainfall in the river flows in urbanized catchments by the historical rainfall data analysis obtained during critical events. The Tiete River catchment, in its most urbanized portion, is the subject of study of this research. After a review of the subject in the specific literature, design rainfall was developed along with the observed and theoretical patterns, often used in the generation of synthetic storms. The total volume precipitated was associated with the 100 years return period (RP), from the statistical analysis of point rainfall and for the application of areal reduction factors (ARF) observed in the study area and in other regions, which have been used in drainage projects without any validation study; the intention was to demonstrate the importance of the definition of specific ARF, in order to avoid oversizing and optimizing solutions. The design precipitation was applied on rainfall-runoff mathematical model, properly calibrated, so as to obtain the resulting design flow at the downstream boundary of the catchment, facing the different patterns of hydrological solicitations. In order to assist the calibration of the model, available data has been used from telemetric stations of the Sistema de Alerta a Inundações de São Paulo (São Paulo Flooding Alert System) - SAISP, discharge curves, and for better representation of the observed precipitation events, can be counted on the images taken from the Ponte Nova radar, as a complement to the information from the surface network. The comparison of the results of the hydrological model has shown that the effects of the variable parameters (volume, spatial and temporal distributions) are significant in the composition of the design hydrograph. Out of the performed tests, the most and the least critical situations were identified concerning the catchment in terms of both spatial and temporal distribution as well as the duration of the design storm. Also, the differences in the dimensions of the of the drainage system design were established by the adoption of specific ARF. Thus, it has been concluded, according to the proposed methodology, that it is possible to reach maximum design flow just by simulating synthetic storms, with differences ranging from 10% to 20% of the observed storms maximized. However, there is a need for additional studies, either to set up setting specific values of ARF or to simulate a larger quantity of critical patterns observed, in order to apply the indications of this study with higher reliability.
23

Análise comparativa do efeito da distribuição espaço-tempo em eventos pluviométricos intensos na formação de vazões em bacias urbanas. / Comparative analysis of the effect of space-time distribution of heavy rainfall events in the formation of flows in urban catchments.

Lígia de Souza Girnius 18 May 2016 (has links)
Esta pesquisa tem como finalidade discutir os impactos da variabilidade espacial e temporal de precipitações intensas nas vazões de cursos d\'água em bacias urbanizadas mediante a análise de dados históricos da pluviometria obtidos durante eventos críticos. A bacia hidrográfica do rio Tietê, em sua porção mais urbanizada, é a área objeto deste estudo. Após uma revisão sobre o tema na literatura específica, foram desenvolvidas chuvas de projeto com os padrões observados e com padrões teóricos, frequentemente utilizados na geração das tormentas sintéticas. O volume total precipitado foi associado ao período de retorno (TR) de 100 anos, a partir da análise estatística de chuvas pontuais e pela aplicação de fatores de redução de área (FRA) observados na área em estudo e de outras regiões, que vêm sendo utilizados em projetos de drenagem, sem qualquer estudo de validação; o intuito foi o de demonstrar a importância da definição de FRA específicos, a fim de evitar superdimensionamentos e otimizar as soluções. As chuvas de projeto foram aplicadas num modelo matemático de transformação chuva-vazão, devidamente calibrado, para obtenção das vazões de projeto resultantes no limite de jusante da bacia hidrográfica, frente aos diferentes padrões de solicitações hidrológicas. Para auxiliar a calibração do modelo estavam disponíveis dados dos postos telemétricos do Sistema de Alerta a Inundações de São Paulo - SAISP, curvas-chave e, para melhor representação dos eventos de precipitação observados, pode-se contar com as imagens do radar de Ponte Nova, em complementação às informações da rede de superfície. A comparação dos resultados obtidos no modelo hidrológico mostrou que os efeitos dos parâmetros variáveis (volume, distribuição espacial e temporal) são expressivos na composição dos hidrogramas de projeto. Dos testes realizados, identificaram-se as situações mais e menos críticas para a bacia, em termos de distribuição espacial e temporal e duração da chuva de projeto, além de estabelecer as diferenças no dimensionamento do sistema de drenagem pela adoção de FRA específico. Concluiu-se que, pela metodologia proposta, é possível chegar a vazões máximas de projeto apenas pela simulação de tormentas sintéticas, com diferenças de 10% a 20% das tormentas observadas maximizadas. Há, no entanto, a necessidade de realização de estudos adicionais, tanto para definição dos valores de FRA específicos, quanto de simulação de quantidade maior de padrões críticos observados, para a aplicação prática das indicações desse estudo com maior confiabilidade. / This research aims to discuss the impact of the spatial and temporal variability of heavy rainfall in the river flows in urbanized catchments by the historical rainfall data analysis obtained during critical events. The Tiete River catchment, in its most urbanized portion, is the subject of study of this research. After a review of the subject in the specific literature, design rainfall was developed along with the observed and theoretical patterns, often used in the generation of synthetic storms. The total volume precipitated was associated with the 100 years return period (RP), from the statistical analysis of point rainfall and for the application of areal reduction factors (ARF) observed in the study area and in other regions, which have been used in drainage projects without any validation study; the intention was to demonstrate the importance of the definition of specific ARF, in order to avoid oversizing and optimizing solutions. The design precipitation was applied on rainfall-runoff mathematical model, properly calibrated, so as to obtain the resulting design flow at the downstream boundary of the catchment, facing the different patterns of hydrological solicitations. In order to assist the calibration of the model, available data has been used from telemetric stations of the Sistema de Alerta a Inundações de São Paulo (São Paulo Flooding Alert System) - SAISP, discharge curves, and for better representation of the observed precipitation events, can be counted on the images taken from the Ponte Nova radar, as a complement to the information from the surface network. The comparison of the results of the hydrological model has shown that the effects of the variable parameters (volume, spatial and temporal distributions) are significant in the composition of the design hydrograph. Out of the performed tests, the most and the least critical situations were identified concerning the catchment in terms of both spatial and temporal distribution as well as the duration of the design storm. Also, the differences in the dimensions of the of the drainage system design were established by the adoption of specific ARF. Thus, it has been concluded, according to the proposed methodology, that it is possible to reach maximum design flow just by simulating synthetic storms, with differences ranging from 10% to 20% of the observed storms maximized. However, there is a need for additional studies, either to set up setting specific values of ARF or to simulate a larger quantity of critical patterns observed, in order to apply the indications of this study with higher reliability.
24

The Deformation Characteristics Of Deep Mixed Columns In Soft Clayey Soils: A Model Study

Sengor, Mahmut Yavuz 01 February 2011 (has links) (PDF)
Deep Mixing involves the introduction of cementitious or specially formulated solutions directly into the ground through the use of purpose built blending injection augers. The system is mainly designed to increase strength and reduce compressibility of treated soil. In the first stage of the research effective mixture ratios and mixture types of stabilizing agents were investigated for soft clays (CL form Eymir lake and kaolinite) by means of unconfined compression (UC) tests on stabilized soils. The unconfined compressive strength (UCS) values were obtained for 7,28,90 and 365 days of curing time. The ratio of elastic modulus at 50% failure load (E50) to (UCS) of the stabilizing agents were also investigated. In the second part of the research programme, deep mixed model columns with the three column materials and four different column spacings are formed within the large scale consolidation tanks, and the consolidation characteristics of deep mixed improved clay were investigated. Based on the results of large scale consolidation tests on deep mixed columnar improved soft clay, compressibility characteristics of improved soft clay were determined in relation to spacing of columns namely, effective replacement ratio and binder content. The cement content (also UCS) of the column material was found to be the most important parameter for the improvement effects of DMM applications. Validity of the relations for the estimation of bulk compression modulus of soilcrete were discussed. The use of constrained modulus of the soil and the column material were found to be effective in predicting the compression modulus of the soilcrete. Settlement reduction factor versus replacement ratio and cement content relations were determined which may be used for preliminary design works. The stresses on the soil and the columns were backcalculated from the settlement values. The stress ratios were obtained.
25

Applying the "safe place, safe person, safe systems" framework to improve OHS management: a new integrated approach

Makin, Anne-Marie, Safety Science, Faculty of Science, UNSW January 2009 (has links)
A new model was developed to enhance the understanding of the full context of work associated hazards, to explore the connection between OHS performance and a systematic approach to safety, and to simplify approaches to OHS management. This Safe Place, Safe Person, Safe Systems model was derived from the literature and used as the basis for the development of a framework, consisting of 60 elements which was transformed into an assessment tool. This assessment tool was trialled with a pilot study on a medium sized manufacturing plant in the plastics industry, and the tool and Preliminary Report peer reviewed by an expert panel using the Nominal Group Technique. After refinements were made to the assessment tool it was applied to eight case studies that were drawn from advertisements. This qualitative study consisted of two parts: firstly the assessment using the Safe Place, Safe Person, Safe Systems framework; and secondly a controlled self assessment exercise to target improvements to three of the elements over a period of four months. The study illustrated that the Safe Place, Safe Person, Safe Systems framework could be successfully applied in a range of industries to promote OHS improvements and to provide a systematic, planned approach to fulfilling OHS responsibilities. The application of this framework highlighted that: there is a need for further education on the correct application of the risk assessment process and the responsibilities owed to contractors; techniques such as dynamic risk assessments are more suitable where the place of work is variable and hazards are unpredictable; more focus is needed on the appropriate management of hazardous substances with long term health consequences; and that the level of formality invoked for treating hazards does not necessarily equate to improved risk reduction outcomes. The Safe Place, Safe Person, Safe Systems framework was found to be applicable to small, medium and large organisations provided the assessment was scoped to a small division of relatively homogeneous activity to ensure a more representative hazard profile. This approach has provided a way forward to simplify OHS management and also offers practical direction for implementing a targeted OHS improvement program.
26

Applying the "safe place, safe person, safe systems" framework to improve OHS management: a new integrated approach

Makin, Anne-Marie, Safety Science, Faculty of Science, UNSW January 2009 (has links)
A new model was developed to enhance the understanding of the full context of work associated hazards, to explore the connection between OHS performance and a systematic approach to safety, and to simplify approaches to OHS management. This Safe Place, Safe Person, Safe Systems model was derived from the literature and used as the basis for the development of a framework, consisting of 60 elements which was transformed into an assessment tool. This assessment tool was trialled with a pilot study on a medium sized manufacturing plant in the plastics industry, and the tool and Preliminary Report peer reviewed by an expert panel using the Nominal Group Technique. After refinements were made to the assessment tool it was applied to eight case studies that were drawn from advertisements. This qualitative study consisted of two parts: firstly the assessment using the Safe Place, Safe Person, Safe Systems framework; and secondly a controlled self assessment exercise to target improvements to three of the elements over a period of four months. The study illustrated that the Safe Place, Safe Person, Safe Systems framework could be successfully applied in a range of industries to promote OHS improvements and to provide a systematic, planned approach to fulfilling OHS responsibilities. The application of this framework highlighted that: there is a need for further education on the correct application of the risk assessment process and the responsibilities owed to contractors; techniques such as dynamic risk assessments are more suitable where the place of work is variable and hazards are unpredictable; more focus is needed on the appropriate management of hazardous substances with long term health consequences; and that the level of formality invoked for treating hazards does not necessarily equate to improved risk reduction outcomes. The Safe Place, Safe Person, Safe Systems framework was found to be applicable to small, medium and large organisations provided the assessment was scoped to a small division of relatively homogeneous activity to ensure a more representative hazard profile. This approach has provided a way forward to simplify OHS management and also offers practical direction for implementing a targeted OHS improvement program.

Page generated in 0.0966 seconds