Spelling suggestions: "subject:"regressão nãoparamétrica"" "subject:"regressão nãoparamétrico""
1 |
Análise da série do índice de Depósito Interfinanceiro: modelagem da volatilidade e apreçamento de suas opções. / Analysis of Brazilian Interbank Deposit Index series: volatility modeling and option pricingMauad, Roberto Baltieri 05 December 2013 (has links)
Modelos bastante utilizados atualmente no apreçamento de derivativos de taxas de juros realizam, muitas vezes, premissas excessivamente restritivas com relação à volatilidade da série do ativo objeto. O método de Black and Scholes e o de Vasicek, por exemplo, consideram a variância da série como constante no tempo e entre as diferentes maturidades, suposição que pode não ser a mais adequada para todos os casos. Assim, entre as técnicas alternativas de modelagem da volatilidade que vêm sendo estudadas, destacam-se as regressões por kernel. Discutimos neste trabalho a modelagem não paramétrica por meio da referida técnica e posterior apreçamento das opções em um modelo HJM Gaussiano. Analisamos diferentes especificações possíveis para a estimação não paramétrica da função de volatilidade através de simulações de Monte Carlo para o apreçamento de opções sobre títulos zero cupom, e realizamos um estudo empírico utilizando a metodologia proposta para o apreçamento de opções sobre IDI no mercado brasileiro. Um dos principais resultados encontrados é o bom ajuste da metodologia proposta no apreçamento de opções sobre títulos zero cupom. / Many models which have been recently used for derivatives pricing make restrictive assumptions about the volatility of the underlying object. Black-Scholes and Vasicek models, for instance, consider the volatility of the series as constant throughout time and maturity, an assumption that might not be the most appropriate for all cases. In this context, kernel regressions are important technics which have been researched recently. We discuss in this framework nonparametric modeling using the aforementioned technic and posterior option pricing using a Gaussian HJM model. We analyze different specifications for the nonparametric estimation of the volatility function using Monte Carlo simulations for the pricing of options on zero coupon bonds and conduct an empirical study using the proposed methodology for the pricing of options on the Interbank Deposit Index (IDI) in the Brazilian market. One of our main results is the good adjustment of the proposed methodology on the pricing of options on zero coupon bonds.
|
2 |
Análise da série do índice de Depósito Interfinanceiro: modelagem da volatilidade e apreçamento de suas opções. / Analysis of Brazilian Interbank Deposit Index series: volatility modeling and option pricingRoberto Baltieri Mauad 05 December 2013 (has links)
Modelos bastante utilizados atualmente no apreçamento de derivativos de taxas de juros realizam, muitas vezes, premissas excessivamente restritivas com relação à volatilidade da série do ativo objeto. O método de Black and Scholes e o de Vasicek, por exemplo, consideram a variância da série como constante no tempo e entre as diferentes maturidades, suposição que pode não ser a mais adequada para todos os casos. Assim, entre as técnicas alternativas de modelagem da volatilidade que vêm sendo estudadas, destacam-se as regressões por kernel. Discutimos neste trabalho a modelagem não paramétrica por meio da referida técnica e posterior apreçamento das opções em um modelo HJM Gaussiano. Analisamos diferentes especificações possíveis para a estimação não paramétrica da função de volatilidade através de simulações de Monte Carlo para o apreçamento de opções sobre títulos zero cupom, e realizamos um estudo empírico utilizando a metodologia proposta para o apreçamento de opções sobre IDI no mercado brasileiro. Um dos principais resultados encontrados é o bom ajuste da metodologia proposta no apreçamento de opções sobre títulos zero cupom. / Many models which have been recently used for derivatives pricing make restrictive assumptions about the volatility of the underlying object. Black-Scholes and Vasicek models, for instance, consider the volatility of the series as constant throughout time and maturity, an assumption that might not be the most appropriate for all cases. In this context, kernel regressions are important technics which have been researched recently. We discuss in this framework nonparametric modeling using the aforementioned technic and posterior option pricing using a Gaussian HJM model. We analyze different specifications for the nonparametric estimation of the volatility function using Monte Carlo simulations for the pricing of options on zero coupon bonds and conduct an empirical study using the proposed methodology for the pricing of options on the Interbank Deposit Index (IDI) in the Brazilian market. One of our main results is the good adjustment of the proposed methodology on the pricing of options on zero coupon bonds.
|
3 |
A relação entre o tamanho das propriedades agrícolas e a produtividade no Brasil: uma análise não paramétrica / The relationship between farm size and productivity in Brazil: a nonparametric analysisFerreira, Alexandre Amorim de Souza 05 April 2018 (has links)
A análise de regressão kernel não paramétrica desconsidera qualquer influência das formas funcionais geralmente empregadas em análises de regressões paramétricas, permitindo os dados \"falarem por si mesmos\". Enquanto os estimadores paramétricos são considerados globais, os kernels não paramétricos usam uma amostra de dados próximas (definida pela largura da janela) a um ponto para ajustar a estimação, o que permite focar em peculiaridades locais dos dados. Ambas as análises foram aplicadas aos dados do Censo Agropecuário de 2006 realizado pelo IBGE, agregados municipalmente e em dezessete faixas de áreas, para estimar uma função de produção com o objetivo de estabelecer a relação entre o tamanho das propriedades agrícolas e o valor da produção por hectare (produtividade). A relação constatada foi inversa, porém a análise local feita pelos estimadores kernels explicitou uma relação direta entre as elasticidades de produção dos insumos e o tamanho das propriedades agrícolas, o que não justifica uma política de redistribuição de terras no sentido do aumento da produtividade. Além disto, análises gráficas contra fatuais (que manteve os insumos, exceto a área, constantes em seus valores médios) mostraram que a relação não é linear, não é monotônica, e difere dentre as regiões, o que é um desafio para a elaboração de políticas de redistribuição de terras. / Nonparametric kernel regression analysis disregards any influence of the functional forms commonly employed in parametric regression analyzes, allowing the data to \"speak for itself.\" While parametric estimators are considered global, nonparametric kernels use a sample of nearby data (defined by the bandwidth) at a point to adjust the estimation, which allows focusing on local peculiarities of the data. Both analyzes were applied to data from the 2006 IBGE Census of Agriculture, aggregated in municipalities and in seventeen areas, to estimate a production function with the objective of establishing the relationship between the size of agricultural properties and the value of production by hectare (productivity). The observed relationship was reversed, but the local analysis made by the kernels estimators explained a direct relationship between the elasticities of production of the inputs and the size of the agricultural properties, which does not justify a policy of redistribution of land in order to increase productivity. In addition, graphical analyzes against factors (which kept the inputs, except the area, constant in their mean values) showed that the relationship is not linear, is not monotonic, and differs among regions, which is a challenge for the elaboration of land redistribution policies.
|
4 |
Regressão não paramétrica com processos estacionários alpha-mixing via ondaletas / Nonparametric regression with stationary mixing processes.Gomez Gomez, Luz Marina 22 January 2013 (has links)
Nesta tese consideramos um modelo de regressão não paramétrica, quando a variável explicativa e um processo estritamente estacionário e alpha-mixing. São estudadas as condições sobre o processo Xt e sua estrutura de dependência, assim como do domínio da função f a ser estimada. Também são feitas as adaptações necessárias aos procedimentos para obter as taxas de convergência do risco para a norma Lp, no caso de ondaletas deformadas. Em relação às ondaletas adaptativas de Haar, obtêm-se as taxas de convergência do risco do estimador proposto. Mediante estudos de simulação, e avaliado o desempenho dos procedimentos propostos quando aplicados a amostras finitas sob diferentes níveis de perturbação do sinal e diferentes tamanhos da amostra. Também são feitas aplicações a dados reais. / In this thesis we consider a nonparametric regression model, when the exploratory variables are alpha-mixing stationary processes. We obtain convergence rates for risk for Lp norm, via warped wavelets, under suitable regularity conditions. For estimation using design adapted Haar wavelets we obtain convergence rates for the risk of the proposed estimator. The performance of the estimators are assessed via simulation studies with dierent sample sizes and dierent signal-to-noise ratios. Applications to real data are also given.
|
5 |
Regressão não paramétrica com processos estacionários alpha-mixing via ondaletas / Nonparametric regression with stationary mixing processes.Luz Marina Gomez Gomez 22 January 2013 (has links)
Nesta tese consideramos um modelo de regressão não paramétrica, quando a variável explicativa e um processo estritamente estacionário e alpha-mixing. São estudadas as condições sobre o processo Xt e sua estrutura de dependência, assim como do domínio da função f a ser estimada. Também são feitas as adaptações necessárias aos procedimentos para obter as taxas de convergência do risco para a norma Lp, no caso de ondaletas deformadas. Em relação às ondaletas adaptativas de Haar, obtêm-se as taxas de convergência do risco do estimador proposto. Mediante estudos de simulação, e avaliado o desempenho dos procedimentos propostos quando aplicados a amostras finitas sob diferentes níveis de perturbação do sinal e diferentes tamanhos da amostra. Também são feitas aplicações a dados reais. / In this thesis we consider a nonparametric regression model, when the exploratory variables are alpha-mixing stationary processes. We obtain convergence rates for risk for Lp norm, via warped wavelets, under suitable regularity conditions. For estimation using design adapted Haar wavelets we obtain convergence rates for the risk of the proposed estimator. The performance of the estimators are assessed via simulation studies with dierent sample sizes and dierent signal-to-noise ratios. Applications to real data are also given.
|
6 |
A relação entre o tamanho das propriedades agrícolas e a produtividade no Brasil: uma análise não paramétrica / The relationship between farm size and productivity in Brazil: a nonparametric analysisAlexandre Amorim de Souza Ferreira 05 April 2018 (has links)
A análise de regressão kernel não paramétrica desconsidera qualquer influência das formas funcionais geralmente empregadas em análises de regressões paramétricas, permitindo os dados \"falarem por si mesmos\". Enquanto os estimadores paramétricos são considerados globais, os kernels não paramétricos usam uma amostra de dados próximas (definida pela largura da janela) a um ponto para ajustar a estimação, o que permite focar em peculiaridades locais dos dados. Ambas as análises foram aplicadas aos dados do Censo Agropecuário de 2006 realizado pelo IBGE, agregados municipalmente e em dezessete faixas de áreas, para estimar uma função de produção com o objetivo de estabelecer a relação entre o tamanho das propriedades agrícolas e o valor da produção por hectare (produtividade). A relação constatada foi inversa, porém a análise local feita pelos estimadores kernels explicitou uma relação direta entre as elasticidades de produção dos insumos e o tamanho das propriedades agrícolas, o que não justifica uma política de redistribuição de terras no sentido do aumento da produtividade. Além disto, análises gráficas contra fatuais (que manteve os insumos, exceto a área, constantes em seus valores médios) mostraram que a relação não é linear, não é monotônica, e difere dentre as regiões, o que é um desafio para a elaboração de políticas de redistribuição de terras. / Nonparametric kernel regression analysis disregards any influence of the functional forms commonly employed in parametric regression analyzes, allowing the data to \"speak for itself.\" While parametric estimators are considered global, nonparametric kernels use a sample of nearby data (defined by the bandwidth) at a point to adjust the estimation, which allows focusing on local peculiarities of the data. Both analyzes were applied to data from the 2006 IBGE Census of Agriculture, aggregated in municipalities and in seventeen areas, to estimate a production function with the objective of establishing the relationship between the size of agricultural properties and the value of production by hectare (productivity). The observed relationship was reversed, but the local analysis made by the kernels estimators explained a direct relationship between the elasticities of production of the inputs and the size of the agricultural properties, which does not justify a policy of redistribution of land in order to increase productivity. In addition, graphical analyzes against factors (which kept the inputs, except the area, constant in their mean values) showed that the relationship is not linear, is not monotonic, and differs among regions, which is a challenge for the elaboration of land redistribution policies.
|
7 |
Advances on the Birnbaum-Saunders distribution / Avanços na distribuição Birnbaum-SaundersNakamura, Luiz Ricardo 26 August 2016 (has links)
The Birnbaum-Saunders (BS) distribution is the most popular model used to describe lifetime process under fatigue. Throughout the years, this distribution has received a wide ranging of applications, demanding some more flexible extensions to solve more complex problems. One of the most well-known extensions of the BS distribution is the generalized Birnbaum- Saunders (GBS) family of distributions that includes the Birnbaum-Saunders special-case (BSSC) and the Birnbaum-Saunders generalized t (BSGT) models as special cases. Although the BS-SC distribution was previously developed in the literature, it was never deeply studied and hence, in this thesis, we provide a full Bayesian study and develop a tool to generate random numbers from this distribution. Further, we develop a very flexible regression model, that admits different degrees of skewness and kurtosis, based on the BSGT distribution using the generalized additive models for location, scale and shape (GAMLSS) framework. We also introduce a new extension of the BS distribution called the Birnbaum-Saunders power (BSP) family of distributions, which contains several special or limiting cases already published in the literature, including the GBS family. The main feature of the new family is that it can produce both unimodal and bimodal shapes depending on its parameter values. We also introduce this new family of distributions into the GAMLSS framework, in order to model any or all the parameters of the distribution using parametric linear and/or nonparametric smooth functions of explanatory variables. Throughout this thesis we present five different applications in real data sets in order to illustrate the developed theoretical results. / A distribuição Birnbaum-Saunders (BS) é o modelo mais popular utilizado para descrever processos de fadiga. Ao longo dos anos, essa distribuição vem recebendo aplicações nas mais diversas áreas, demandando assim algumas extensões mais flexíveis para resolver problemas mais complexos. Uma das extensões mais conhecidas na literatura é a família de distribuições Birnbaum-Saunders generalizada (GBS), que inclui as distribuições Birnbaum-Saunders casoespecial (BS-SC) e Birnbaum-Saunders t generalizada (BSGT) como modelos especiais. Embora a distribuição BS-SC tenha sido previamente desenvolvida na literatura, nunca foi estudada mais profundamente e, assim, nesta tese, um estudo bayesiano é desenvolvido acerca da mesma além de um novo gerador de números aleatórios dessa distribuição ser apresentado. Adicionalmente, um modelo de regressão baseado na distribuição BSGT é desenvolvido utilizando-se os modelos aditivos generalizados para locação, escala e forma (GAMLSS), os quais apresentam grande flexibilidade tanto para a assimetria como para a curtose. Uma nova extensão da distribuição BS também é apresentada, denominada família de distribuições Birnbaum-Saunders potência (BSP), que contém inúmeros casos especiais ou limites já publicados na literatura, incluindo a família GBS. A principal característica desta nova família é que ela é capaz de produzir formas tanto uni como bimodais dependendo do valor de seus parâmetros. Esta nova família também é introduzida na estrutura dos modelos GAMLSS para fornecer uma ferramenta capaz de modelar todos os parâmetros da distribuição como funções lineares e/ou não-lineares suavizadas de variáveis explicativas. Ao longo desta tese são apresentadas cinco diferentes aplicações em conjuntos de dados reais para ilustrar os resultados teóricos obtidos.
|
8 |
Regressão não-paramétrica com erros correlacionados via ondaletas. / Non-parametric regression with correlated errors using waveletsPorto, Rogério de Faria 03 October 2008 (has links)
Nesta tese, são obtidas taxas de convergência a zero, do risco de estimação obtido com regressão não-paramétrica via ondaletas, quando há erros correlacionados. Quatro métodos de regressão não-paramétrica via ondaletas, com delineamento desigualmente espaçado são estudados na presença de erros correlacionados, oriundos de processos estocásticos. São apresentadas condições sobre os erros e adaptações aos procedimentos necessárias à obtenção de taxas de convergência quase minimax, para os estimadores. Sempre que possível são obtidas taxas de convergência para os estimadores no domínio da função, sob condições bastante gerais a respeito da função a ser estimada, do delineamento e da correlação dos erros. Mediante estudos de simulação, são avaliados os comportamentos de alguns métodos propostos quando aplicados a amostras finitas. Em geral sugere-se usar um dos procedimentos estudados, porém aplicando-se limiares por níveis. Como a estimação da variância dos coecientes de detalhes pode ser problemática em alguns casos, também se propõe um procedimento iterativo semi-paramétrico geral para métodos que utilizam ondaletas, na presença de erros em séries temporais. / In this thesis, rates of convergence to zero are obtained for the estimation risk, for non-parametric regression using wavelets, when the errors are correlated. Four non-parametric regression methods using wavelets, with un-equally spaced design are studied in the presence of correlated errors, that come from stochastic processes. Conditions on the errors and adaptations to the procedures are presented, so that the estimators achieve quasi-minimax rates of convergence. Whenever is possible, rates of convergence are obtained for the estimators in the domain of the function, under mild conditions on the function to be estimated, on the design and on the error correlation. Through simulation studies, the behavior of some of the proposed methods is evaluated, when used on finite samples. Generally, it is suggested to use one of the studied methods, however applying thresholds by level. Since the estimation of the detail coecients can be dicult in some cases, it is also proposed a general semi-parametric iterative procedure, for wavelet methods in the presence of time-series errors.
|
9 |
Regressão não-paramétrica com erros correlacionados via ondaletas. / Non-parametric regression with correlated errors using waveletsRogério de Faria Porto 03 October 2008 (has links)
Nesta tese, são obtidas taxas de convergência a zero, do risco de estimação obtido com regressão não-paramétrica via ondaletas, quando há erros correlacionados. Quatro métodos de regressão não-paramétrica via ondaletas, com delineamento desigualmente espaçado são estudados na presença de erros correlacionados, oriundos de processos estocásticos. São apresentadas condições sobre os erros e adaptações aos procedimentos necessárias à obtenção de taxas de convergência quase minimax, para os estimadores. Sempre que possível são obtidas taxas de convergência para os estimadores no domínio da função, sob condições bastante gerais a respeito da função a ser estimada, do delineamento e da correlação dos erros. Mediante estudos de simulação, são avaliados os comportamentos de alguns métodos propostos quando aplicados a amostras finitas. Em geral sugere-se usar um dos procedimentos estudados, porém aplicando-se limiares por níveis. Como a estimação da variância dos coecientes de detalhes pode ser problemática em alguns casos, também se propõe um procedimento iterativo semi-paramétrico geral para métodos que utilizam ondaletas, na presença de erros em séries temporais. / In this thesis, rates of convergence to zero are obtained for the estimation risk, for non-parametric regression using wavelets, when the errors are correlated. Four non-parametric regression methods using wavelets, with un-equally spaced design are studied in the presence of correlated errors, that come from stochastic processes. Conditions on the errors and adaptations to the procedures are presented, so that the estimators achieve quasi-minimax rates of convergence. Whenever is possible, rates of convergence are obtained for the estimators in the domain of the function, under mild conditions on the function to be estimated, on the design and on the error correlation. Through simulation studies, the behavior of some of the proposed methods is evaluated, when used on finite samples. Generally, it is suggested to use one of the studied methods, however applying thresholds by level. Since the estimation of the detail coecients can be dicult in some cases, it is also proposed a general semi-parametric iterative procedure, for wavelet methods in the presence of time-series errors.
|
10 |
Estratégias de momentum no mercado cambialSilva, Kesley Leandro da 15 February 2016 (has links)
Submitted by Kesley Leandro da Silva (kesley.leandro@gmail.com) on 2016-03-10T17:32:09Z
No. of bitstreams: 1
Dissertação v02.docx: 272937 bytes, checksum: 8b3b51152e65026481b1ba2a1541fcde (MD5) / Rejected by Renata de Souza Nascimento (renata.souza@fgv.br), reason: Kesley,
Segue abaixo as alterações que deverão ser realizadas em seu trabalho:
- O arquivo deve estar em pdf.
- Nome e Título em Letra maiúscula.
- Retirar a sigla SP que consta ao lado de SÃO PAULO.
- A ficha catalográfica deve estar na parte inferior da pagina
- Centralizar os títulos Resumo e Abstract
- As páginas anteriores da Introdução não podem estar numeradas.
Em seguida, submeter novamente o trabalho.
Att on 2016-03-10T21:57:30Z (GMT) / Submitted by Kesley Leandro da Silva (kesley.leandro@gmail.com) on 2016-03-11T15:24:37Z
No. of bitstreams: 1
Dissertação v03.pdf: 1405923 bytes, checksum: 28d2a1fb855d75506c6f1f010f4ff5a5 (MD5) / Approved for entry into archive by Renata de Souza Nascimento (renata.souza@fgv.br) on 2016-03-11T15:42:19Z (GMT) No. of bitstreams: 1
Dissertação v03.pdf: 1405923 bytes, checksum: 28d2a1fb855d75506c6f1f010f4ff5a5 (MD5) / Made available in DSpace on 2016-03-11T16:00:12Z (GMT). No. of bitstreams: 1
Dissertação v03.pdf: 1405923 bytes, checksum: 28d2a1fb855d75506c6f1f010f4ff5a5 (MD5)
Previous issue date: 2016-02-15 / Utilizo dados semanais para investigar a lucratividade de estratégias de momentum no mercado de câmbio baseadas em dois diferentes métodos de extração da tendência, possivelmente não linear. Comparo a performance com as tradicionais regras de médias móveis, método linear bastante utilizado pelos profissionais do mercado. Eu encontro que o desempenho de todas as estratégias é extremamente sensível à escolha da moeda, às defasagens utilizadas e ao critério de avaliação escolhido. A despeito disso, as moedas dos países do G10 apresentam resultados médios melhores com a utilização dos métodos não lineares, enquanto as moedas dos países emergentes apresentam resultados mistos. Adoto também uma metodologia para o gerenciamento do risco das estratégias de momentum, visando minimizar as 'grandes perdas'. Ela tem êxito em diminuir as perdas máximas semanais, o desvio-padrão, a assimetria e curtose para a maior parte das moedas em ambas as estratégias. Quanto ao desempenho, as operações baseadas no filtro HP com gestão do risco apresentam retornos e índices de Sharpe maiores para cerca de 70% das estratégias, enquanto as baseadas na regressão não paramétrica apresentam resultados melhores para cerca de 60% das estratégias. / I use weekly data to investigate the profitability of momentum strategies in the currency market based on two different methods of trending extraction, possibly nonlinear. I compare the performance with the traditional moving averages rules, linear method of trading broadly used by market professionals. I find that the performance of all strategies is extremely sensitive to the choice of currency, lags parameters and the evaluation criteria. Nevertheless, the G10 currencies show better average results with the nonlinear methods, while the emerging market currencies show mixed results. I also adopt a methodology for managing the risk of momentum strategies to minimize the “worst crashes”. It works to lower the maximum weekly losses, the standard deviation, the skewness and the kurtosis for most currencies in both strategies. In terms of performance, HP filter with risk-managed momentum shows higher return and Sharpe ratio for about 70% the observations, while those based on nonparametric regression show higher numbers for about 60% the observations.
|
Page generated in 0.0905 seconds