• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of the alcohol dehydrogenase II regulatory sequences in yeast Saacharomyces cerevisae /

Yu, Josephine V. January 1989 (has links)
Thesis (Ph. D.)--University of Washington, 1989. / Includes bibliographical references.
2

How to manipulate the ribosome : structural studies of Dicistroviridae IGR IRESes and their manipulation of the ribosome /

Pfingsten, Jennifer Sarah Anne. January 2007 (has links)
Thesis (Ph.D. in Biochemistry) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 191-200). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
3

Cell lineage specific expression of matrix metalloproteinases -2 and -9 in transgenic mice

Salonurmi, T. (Tuire) 28 May 2004 (has links)
Abstract Mammalian extracellular matrix metalloproteinases, MMPs, are a family of enzymes capable of degrading components of the connective tissue. The in vivo regulation of the cell lineage-specific expression of MMPs, however, is not well known. This study used transgenic mice to identify cell-specific elements in the upstream regulatory regions of MMP-2 and MMP-9. Transgenic mice were generated by pronuclear microinjections into fertilised oocytes using lacZ as a reporter gene. The reporter gene constructs containing varying lengths of the MMP-9 5'-upstream region revealed an area that allowed for expression in osteoclasts and migrating keratinocytes, the cells that also express MMP-9 in vivo. The sequence driving the cell specific expression included the nucleotides from -2722 to -7745. When the same upstream regulatory fragment of MMP-9 was used to drive the expression of the human tissue specific inhibitor of MMPs, TIMP-1, instead of lacZ, the transgenic mice developed normally and the animals were fertile with normal post-embryonic growth. However, cutaneous wound healing was remarkably retarded, but not totally prevented, and the migration of keratinocytes over the wound was slow. The mice expressed the human TIMP-1 in keratinocytes during wound healing and in situ zymography revealed a total blockage of the gelatinolytic activity of MMP-2 and MMP-9, the main gelatinases active in the healing wound tissues. By using a sequence of 6500 base pairs from the 5'-upstream regulatory region of the MMP-2 gene it was possible to drive the expression of lacZ in mesenchymal cells of the developing transgenic mouse embryo. The expression pattern was similar to that found in previous in situ hybridization studies, following the different stages of tissue morphogenesis and being present in the areas of basement membrane degradation and epithelial cell invasion. Computer analyses of the sequence revealed three regulatory upstream regions conserved between human, mouse, and rat, and possibly responsible for the cell-and tissue specificity. New transgene constructs containing fragments of the conserved regions will provide a more detailed profile of the in vivo MMP-2 regulation in the future. This study defined a fragment in the upstream regulatory region of MMP-9 that is essential for expression in osteoclasts and migrating keratinocytes. Furthermore, the keratinocyte derived MMPs, including MMP-9, were found to play important role in epithelial cell migration in the area of the healing wound.
4

Studies on Genomic Sequences For the Heat Shock Proteins hsp60 and hsp10 From Chinese Hamster Ovary Cells

Zurawinski, Joni 12 1900 (has links)
Although the eDNA sequences for the 10 k:Da (hsp 10, hsp 1 0) and the 60 k:Da (hsp60, cpn60) heat shock proteins have been obtained for a number of mammalian species, until very recently information was not available on the functional genes encoding these proteins. The primary objective of this work was to clone and sequence the functional genes for these proteins from CHO, Chinese hamster ovary cells. Screening of a lambda EMBL3 CHO genomic library with the CHO hsp 10 eDNA identified a clone containing the putative hsp 10 functional gene. A -5.5 kb fragment was isolated from one of these clones by enzymatic digestion and -3.3 kb was sequenced. The clone was found to contain consensus regulatory sequences upstream of the putative transcription initiation site, + 1, including two Sp 1 binding sites, a CAAT box, and a single heat shock element, HSE, but lacked a TATA box. The coding region consists of four exons, identical to the hsp10 CHO eDNA sequence, separated by three introns, of 200 bp, 600 bp and 1600 bp in size, containing conserved splice sites. Screening of the same EMBL3 CHO genomic library with the CHO hsp 10 eDNA also resulted in isolation of a full length processed pseudogene with -90 % identity to the eDNA. This pseudogene lacked introns, contained a poly(A) tract, as well as various single bp changes, additions and deletions. The upstream region of this pseudo gene was found to contain similarity to the human LINE sequence, a DNA repetitive element. PCR amplification ofCHO-WT genomic DNA resulted in isolation offive additional processed pseudogenes, corresponding to the central -270 bp of the CHO hsplO eDNA. All the pseudogenes displayed a high degree of similarity to the CHO hsp 10 eDNA sequence despite the presence of numerous mutations. Prior to this report, pseudogenes had not been found associated with hsp 10. The identification of these pseudogenes suggests the presence of a multi gene family for this heat shock protein in the CHO genome. Previously, a semi-processed pseudogene, Gel, was identified for hsp60 from CHO cells which contained a single -87 bp intron near its 3' end (Venner eta/., 1990). From this pseudo gene, a fragment containing the -87 bp intron was isolated for use as a probe to screen a lambda EMBL3 CHO genomic library. This resulted in isolation of several positive clones, two of which were purified, a -1.0 kb fragment amplified by PCR and then sequenced revealing two additional semi-processed pseudogenes, designated .A4 and .AS. These pseudo genes were found to be homologous to the GC 1 clone, containing many similar mutations as well as the -87 bp intron. Utilizing CHO-WT genomic DNA, a separate PCR amplification resulted in isolation of a -2.5 kb fragment which was partially sequenced and found to correspond to the putative hsp60 functional gene. The fragment contained one exon, which was identical to the CHO hsp60 eDNA in the region sequenced, and two introns of800 bp and 1500 bp. This fragment can now provide an ideal probe for isolation ofthe CHO hsp60 functional gene. / Thesis / Master of Science (MSc)
5

Translation of the two proteins encoded by the mouse LINE1 retrotransposon /

Li, Wai-Lun Patrick. January 2007 (has links)
Thesis (Ph.D. in Biophysics & Genetics, Human Medical Genetics Program) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 123-147). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
6

Etude de séquences cis-régulatrices d'épissage dans le gène DMD : rôle dans la régulation des pseudoexons et intérêt pour le saut d'exon thérapeutique. / Splicing cis-regulatory sequences in the DMD gene : role in pseudoexons regulation and interest for the therapeutic exon skipping strategy.

Messaoud Khelifi, Mouna 16 December 2010 (has links)
L'épissage des ARN pré-messagers est une étape essentielle pour l'expression des gènes chez les eucaryotes supérieurs. La reconnaissance des exons par la machinerie d'épissage est réalisée grâce à différents éléments cis-régulateurs incluant les séquences consensus d'épissage et les séquences auxiliaires activatrices ou inhibitrices d'épissage. Le pré-ARNm représente une nouvelle cible thérapeutique pour le traitement des maladies génétiques. L'approche du saut d'exon thérapeutique, destinée à restaurer l'expression d'une protéine totalement ou partiellement fonctionnelle en interférant avec le processus d'épissage, suscite un grand intérêt notamment pour la dystrophie musculaire de Duchenne où la modification du transcrit permettrait d'obtenir une forme modérée de la maladie, la Dystrophie musculaire de Becker. Des oligonucléotides antisens sont utilisés pour masquer les signaux d'épissage de reconnaissance d'un exon par le spliceosome, et induire son excision (ou saut) du transcrit mature. La détermination de la meilleure séquence cible des AONs est une difficulté majeure de cette approche. Pour le gène DMD, nous avons pu établir grâce à des analyses bioinformatiques et statistiques combinées avec des tests fonctionnels utilisant des minigènes rapporteurs d'épissage, que le ciblage de motifs exoniques qui fixent le facteur d'épissage SF2/ASF permettait d'obtenir la meilleure efficacité des AONs. Par ailleurs, nous avons exploré la régulation de l'épissage des pseudoexons dans le gène DMD, et notamment les mécanismes conduisant à l'inclusion de ces séquences introniques dans le transcrit mature en condition pathologique. L'étude de deux cas exceptionnels d'activation de pseudoexons associée à des remaniements introniques rares (double délétion, inversion) élargit le spectre des mutations à l'origine de ces défauts d'épissage, et illustre le rôle encore mal connu des remaniements introniques en pathologie humaine. / Splicing of pre-messenger RNAs to mature transcripts is a crucial step in eukaryotic gene expression. The recognition of exon by the splicing machinery involves different cis-regulatory elements, including the splice site motifs and auxiliary sequences, which can act by stimulating or repressing splicing. The pre-mRNA represents a new therapeutic target for the treatment of genetic diseases. Notably, the exon skipping strategy is currently one of the most promising therapeutic approaches for the Duchenne muscular dystrophy. It intends to restore the expression of a partially functional protein by interfering with the splicing process, and converts the severe DMD phenotype into the moderate form of the disease, Becker muscular Dystrophy (BMD). Antisense oligonucleotides are used to mask the splicing signals involved in exon recognition by the spliceosome to induce its skipping from the mature transcript and restore an open reading frame. The determination of the best target sequence of the AONs is one of the major hurdles to overcome. For the DMD gene, a bioinformatic and statistical analysis combined with minigenes studies allowed us to establish that targeting binding sites for the splicing factor SF2/ASF maximizes the AONs efficiency. In a second part of this work, we investigated the splicing regulation of pseudoexons in the DMD gene, in particular the mechanisms leading to the inclusion of these intronic sequences in the mature transcript in pathological conditions. The study of two exceptional cases of pseudoexons activation associated with rare intronic rearrangements (double-deletions, inversion) expands the spectrum of missplicing mutations, and demonstrates the potential role of pure intronic rearrangements in human pathology.
7

The de novo Prediction of Functionally Significant Sequence Motifs in Arabidopsis thaliana.

Austin, Ryan 18 February 2010 (has links)
This thesis performs de novo predictions for functionally significant sequence motifs in the Arabidopsis genome under two separate contexts. Each study applies the use of genomic positional information, statistical over-representation and several biologically contextual filters to maximize the visibility of biological signal in prediction results. Numerous literature supported motifs are prevalent in the results of both studies and a number of novel motif patterns possess a strong potential for in planta significance. The first study examines the statistical over-representation of C-terminal tripeptides as a means for identifying eukaryotic conserved protein targetting signatures. Comparative genomics is applied to the analysis of tripeptide frequencies in the C-terminus of 7 eukaryotic proteomes. While biological signal is maximized through the filtering of both simple sequences and homologous sequences present across protein families. The second study introduces a methodology for the effective prediction of transcription factor binding sites in Arabidopsis. A collection of motif prediction algorithms and a novel enumerative strategy are applied to the prediction of cis-acting regulatory elements within the promoters of genes found coexpressed within distinct tissues and under specific abiotic stress treatments. Overall, the analysis identifies 4 known motifs in expected contexts, 5 known motifs in novel contexts and 7 novel motifs with a high potential for biological function.
8

The de novo Prediction of Functionally Significant Sequence Motifs in Arabidopsis thaliana.

Austin, Ryan 18 February 2010 (has links)
This thesis performs de novo predictions for functionally significant sequence motifs in the Arabidopsis genome under two separate contexts. Each study applies the use of genomic positional information, statistical over-representation and several biologically contextual filters to maximize the visibility of biological signal in prediction results. Numerous literature supported motifs are prevalent in the results of both studies and a number of novel motif patterns possess a strong potential for in planta significance. The first study examines the statistical over-representation of C-terminal tripeptides as a means for identifying eukaryotic conserved protein targetting signatures. Comparative genomics is applied to the analysis of tripeptide frequencies in the C-terminus of 7 eukaryotic proteomes. While biological signal is maximized through the filtering of both simple sequences and homologous sequences present across protein families. The second study introduces a methodology for the effective prediction of transcription factor binding sites in Arabidopsis. A collection of motif prediction algorithms and a novel enumerative strategy are applied to the prediction of cis-acting regulatory elements within the promoters of genes found coexpressed within distinct tissues and under specific abiotic stress treatments. Overall, the analysis identifies 4 known motifs in expected contexts, 5 known motifs in novel contexts and 7 novel motifs with a high potential for biological function.
9

Regulation of Transcription of Mouse Immunoglobulin Germ-Line γ1 RNA: Structural Characterization of Germ-Line γ1 RNA and Molecular Analysis of the Promoter: A Dissertation

Xu, Minzhen 01 May 1991 (has links)
The antibody class switch is achieved by DNA recombination between the sequences called switch (S) regions located 5' to immunoglobulin (Ig) heavy chain constant (CH) region genes. This process can be induced in cultured B cells by polyclonal stimulation and switching can be directed to specific antibody classes by certain lymphokines. These stimuli may regulate the accessibility of CH genes and their S regions to a recombinase as indicated by hypomethylation and transcriptional activity. For example, RNAs transcribed from specific unrearranged (germ-line) CH genes are induced prior to switching under conditions that promote subsequent switching to these same CH genes. The function of transcription of these germ-line CH genes is unknown. How stimuli regulate the accessibility of CHgenes is also unclear. I report in this dissertation the structure of the RNA transcribed from the unrearranged Cγ1 gene in mouse spleen cells treated with LPS plus a HeLa cell supernatant containing recombinant interleukin 4 (rIL-4). I will also show that an 150-bp region upstream of the first initiation site of germ-line γ1 RNA contains promoter and enhancer elements responsible for basal level expression and inducibility by phorbol 12-myristate 13-acetate (PMA) and synergy with IL-4 in an IgM+ B cell line, L10A6.2, and an IgG2a+B cell line, A20.3. The germ-line γ1 RNA is initiated at multiple start sites 5' to the tandem repeats of the γ1 switch (Sγ1) region. As is true for analogous RNAs transcribed from other unrearranged genes, the germ-line γ1 RNA has an I exon transcribed from the region 5' to the Sγ1 region.. The Iγ1 exon is spliced at a unique site to the Cγ1 gene. The germ-line γ1 RNA has an open-reading frame (ORF) that potentially encodes a small protein 48 amino acids in length. Elements located within the 150 bp region 5' to the first initiation site of germ-line γ1 RNA are necessary and sufficient to confer inducibility by PMA and synergy with IL-4 to a minimal thymidine kinase (TK) promoter in L10A6.2 cells but are not sufficient to confer this inducibility in A20.3 cells. Linker-scanning mutations demonstrated that these multiple elements function in a mutually dependent manner as indicated by the fact that mutation of any single element will decrease constitutive expression and inducibility by PMA and PMA plus IL-4. This 150-bp region contains several consensus sequences that bind to known or putative transcription factors, including a C/EBP binding site/IL-4 response element (in the promoter for Ia Aαkgene), four CACCC boxes, a PU box, a TGFβ inhibitory element (TIE), an interferon-αβ response element (αβIRE), and an AP-3 site. My results begin to provide a description of the mechanism of regulation of the accessibility of unrearranged germ-line Sγ1-Cγ1 gene. By activating the germ-line γ1 promoter, IL-4 induces transcription of germ-line γ1 RNA, thereby inducing accessibility of the Sγ1-Cγ1 gene. By inhibiting expression of the germ-line γ1 promoter, IFNγ and TGFβ down-regulate transcription of germ-line γ1 RNA, thus reducing the accessibility of the Sγ1-Cγ1 gene. My results also suggest that signaling via the antigen receptor on B cells may be involved in induction of switch to IgG1. Furthermore, this is the first case reported in which multiple functionally interdependent elements are needed to respond to PMA.
10

Parallel Genetics of Gene Regulatory Sequences in Caenorhabditis elegans

Froehlich, Jonathan 08 June 2022 (has links)
Wie regulatorische Sequenzen die Genexpression steuern, ist von grundlegender Bedeutung für die Erklärung von Phänotypen in Gesundheit und Krankheit. Die Funktion regulatorischer Sequenzen muss letztlich in ihrer genomischen Umgebung und in entwicklungs- oder gewebespezifischen Zusammenhängen verstanden werden. Da dies eine technische Herausforderung ist, wurden bisher nur wenige regulatorische Elemente in vivo charakterisiert. Hier verwenden wir Induktion von Cas9 und multiplexed-sgRNAs, um hunderte von Mutationen in Enhancern/Promotoren und 3′ UTRs von 16 Genen in C. elegans zu erzeugen. Wir quantifizieren die Auswirkungen von Mutationen auf Genexpression und Physiologie durch gezielte RNA- und DNA-Sequenzierung. Bei der Anwendung unseres Ansatzes auf den 3′ UTR von lin-41, bei der wir hunderte von Mutanten erzeugen, stellen wir fest, dass die beiden benachbarten Bindungsstellen für die miRNA let-7 die lin-41-Expression größtenteils unabhängig voneinander regulieren können, mit Hinweisen auf eine mögliche kompensatorische Interaktion. Schließlich verbinden wir regulatorische Genotypen mit phänotypischen Merkmalen für mehrere Gene. Unser Ansatz ermöglicht die parallele Analyse von genregulatorischen Sequenzen direkt in Tieren. / How regulatory sequences control gene expression is fundamental for explaining phenotypes in health and disease. The function of regulatory sequences must ultimately be understood within their genomic environment and development- or tissue-specific contexts. Because this is technically challenging, few regulatory elements have been characterized in vivo. Here, we use inducible Cas9 and multiplexed guide RNAs to create hundreds of mutations in enhancers/promoters and 3′ UTRs of 16 genes in C. elegans. We quantify the impact of mutations on expression and physiology by targeted RNA sequencing and DNA sampling. When applying our approach to the lin-41 3′ UTR, generating hundreds of mutants, we find that the two adjacent binding sites for the miRNA let-7 can regulate lin-41 expression largely independently of each other, with indications of a compensatory interaction. Finally, we map regulatory genotypes to phenotypic traits for several genes. Our approach enables parallel analysis of gene regulatory sequences directly in animals.

Page generated in 0.0921 seconds