• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 6
  • 4
  • 3
  • 2
  • Tagged with
  • 37
  • 37
  • 18
  • 10
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Regulation of hepcidin expression in hepatocytes and macrophages. / 鐵調素在肝細胞和巨噬細胞內的表達調控 / CUHK electronic theses & dissertations collection / Tie tiao su zai gan xi bao he ju shi xi bao nei de biao da tiao kong

January 2013 (has links)
Wu, Xinggang. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 124-161). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
12

Function of the BRE gene in spermatogenesis. / 腦和生殖器官表達基因BRE在精子發生過程中的功能研究 / CUHK electronic theses & dissertations collection / Nao he sheng zhi qi guan biao da ji yin BRE zai jing zi fa sheng guo cheng zhong de gong neng yan jiu

January 2013 (has links)
Yao, Yao. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 131-151). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese.
13

Functional characterization of BRE in cell line and chemically-induced mouse liver cancer.

January 2008 (has links)
Chen, Shuyan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 91-98). / Abstracts in English and Chinese. / ABSTRACT --- p.i / ACKNOWLEGGMENTS --- p.v / LIST OF FIGURES --- p.vi / LIST OF TABLES --- p.vii / ABBREVIATIONS --- p.viii / CONTENTS --- p.ix / Chapter Chapter I --- Introduction / Chapter 1.1 --- Introduction of BRE / Chapter 1.1.1 --- Discovery of BRE --- p.1 / Chapter 1.1.2 --- Isoforms of BRE --- p.2 / Chapter 1.1.3 --- Homology and orthologs of BRE --- p.3 / Chapter 1.1.4 --- Expression studies of BRE mRNA --- p.4 / Chapter 1.1.5 --- Expression and cellular localization of BRE protein --- p.5 / Chapter 1.1.6 --- Interaction between BRE and death receptor --- p.6 / Chapter 1.1.7 --- Anti-apoptotic effect of BRE in cell line studies --- p.9 / Chapter 1.1.8 --- Anti-apoptotic effect of BRE in vivo --- p.11 / Chapter 1.1.9 --- BRE's role in DNA repair and ubiquitination --- p.12 / Chapter 1.1.10 --- BRE's role in regulation of Prohibitin and p53 expression --- p.13 / Chapter 1.2 --- Hepatocellular carcinoma / Chapter 1.2.1 --- Carcinogenesis --- p.15 / Chapter 1.2.2 --- Diethylnitrosamine -induced HCC --- p.15 / Chapter 1.2.3 --- Mouse model for HCC studies --- p.17 / Chapter 1.2.4 --- BRE in human HCC --- p.18 / Chapter 1.3 --- Green Fluorescent Protein / Chapter 1.3.1 --- Application of GFP in biological research --- p.19 / Chapter 1.3.2 --- Advantage of GFP applied in protein localization --- p.19 / Chapter Chapter II --- Materials and Methods / Chapter 2.1 --- Materials / Chapter 2.1.1 --- Primer used for cloning --- p.20 / Chapter 2.1.2 --- DNA clones used in the studies --- p.21 / Chapter 2.1.3 --- Materials for DNA manipulation --- p.24 / Chapter 2.1.4 --- Materials for protein manipulation --- p.24 / Chapter 2.1.5 --- Antibodies --- p.25 / Chapter 2.1.6 --- Chemicals --- p.25 / Chapter 2.1.7 --- Kits --- p.26 / Chapter 2.1.8 --- Culture media and reagents --- p.26 / Chapter 2.1.9 --- Bacterial strain used for transformation and cloning --- p.26 / Chapter 2.1.10 --- Instrumentation --- p.27 / Chapter 2.1.11 --- Animals --- p.27 / Chapter 2.1.12 --- Slides --- p.27 / Chapter 2.2 --- Methods / Chapter 2.2.1 --- Construction of Plasmids / Chapter 2.2.1.1 --- Polymerase chain reaction (PCR) --- p.28 / Chapter 2.2.1.2 --- Enzyme Digestion and Ligation --- p.29 / Chapter 2.2.1.3 --- Transformaion / Chapter 2.2.1.3.1 --- Preparation of competent cells --- p.29 / Chapter 2.2.1.3.2 --- Heat-shock Transformation --- p.29 / Chapter 2.2.1.4 --- Midi Prep of plasmids --- p.30 / Chapter 2.2.2 --- Cell Culture --- p.30 / Chapter 2.2.3 --- Transfection --- p.30 / Chapter 2.2.4 --- MG-132 treatment --- p.31 / Chapter 2.2.5 --- Flow Cytometry --- p.32 / Chapter 2.2.6 --- Western blotting / Chapter 2.2.6.1 --- SDS-PAGE --- p.32 / Chapter 2.2.6.2 --- Immunoblotting --- p.32 / Chapter 2.2.7 --- Production of Monoclonal Antibody --- p.33 / Chapter 2.2.8 --- Mice --- p.34 / Chapter 2.2.9 --- Tissue Processing --- p.35 / Chapter 2.2.10 --- Tissue Section --- p.35 / Chapter 2.2.11 --- Immunostaining --- p.36 / Chapter 2.2.12 --- H&E staining --- p.36 / Chapter 2.2.13 --- Picture Capture --- p.37 / Chapter 2.2.14 --- Confocal imaging --- p.37 / Chapter 2.2.14 --- Statistical Analysis --- p.37 / Chapter Chapter III --- BRE promotes growth of chemically-induced hepatocellular carcinoma / Chapter 3.1 --- DEN induced HCC in male mice --- p.38 / Chapter 3.2 --- BRE facilitates HCC in female mice --- p.44 / Chapter 3.3 --- Over-expression of BRE in tumor portion --- p.45 / Chapter 3.4 --- Direct effect of DEN on BRE expression --- p.47 / Chapter 3.5 --- Contribution of infiltrating cells in up-regulation of BRE --- p.50 / Chapter Chaper IV --- Subcellular localization of BRE / Chapter 4.1 --- GFP-BRE fusion constructs --- p.55 / Chapter 4.1.1 --- Transfection of GFP-BRE fusions --- p.58 / Chapter 4.1.2 --- Flow cytometry analysis of GFP-BRE fusions --- p.59 / Chapter 4.1.3 --- Western blot analysis of GFP-BRE fusions --- p.62 / Chapter 4.1.4 --- Stabilities of GFP-BRE fusions --- p.64 / Chapter 4.2 --- Fusions between GFP and the deletion mutants of BRE --- p.66 / Chapter 4.2.1 --- Transfection of mutants --- p.68 / Chapter 4.2.2 --- Low expression of mutants --- p.69 / Chapter 4.3 --- MG-132 treatments / Chapter 4.3.1 --- Increased expression of fusion proteins --- p.74 / Chapter 4.3.2 --- Subcellular localization of GFP-BRE fusions --- p.77 / Chapter Chapter V --- Discussion / Chapter 5.1 --- Functional role of BRE in HCC / Chapter 5.1.1 --- Stage model of carcinogenesis --- p.81 / Chapter 5.1.2 --- Anti-apoptotic genes in cancer --- p.84 / Chapter 5.1.3 --- Limitation of the study --- p.85 / Chapter 5.1.4 --- Conclusion --- p.85 / Chapter 5.2 --- Subcellular localization of BRE / Chapter 5.2.1 --- Low expression of GFP-BRE fusions --- p.86 / Chapter 5.2.2 --- Additional study --- p.90 / Chapter 5.2.3 --- Conclusion --- p.90 / Reference --- p.91 / Appendix --- p.99
14

Studies of proteins in heme and iron metabolism /

Dzikaitė, Vijolė, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
15

BENS, a novel regulator of bone/cartilage healing

Labban, Nawaf Yousef January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Enhancing osteoblast proliferation, survival, and extracellular matrix protein secretion are potential therapeutic approaches to treat bone fractures and diseases such as osteoporosis. BENS is a traditional medicine used in many countries such as India for thousands of years to treat many diseases including bone diseases. In this study, molecular, cell-based and in vivo approaches were utilized to investigate the effects of BENS on bone and cartilage regeneration. An osteosarcoma cell line (MG63) was incubated in serum free media with and without 0.8 mg/ml of BENS. BENS significantly increased cell survival up to 30 days and these cells retained their ability to proliferate in fresh media with serum. After adding BENS, there were statistically significant decreases in the expression of both anti-apoptotic and pro-apoptotic proteins. An in vivo non-critical size segmental bone defect Xenopus system was used to evaluate the ability of BENS to enhance cartilage formation. After a small segment of the anterior hemisection of the tarsus bone was excised, the frogs were divided into three groups and given subcutaneous injections of either phosphate-buffered saline or BENS once daily for 30 days and then bone/cartilage formation evaluated. The total cartilage area/total section area was significantly increased (2.6 fold) in the BENS treated samples. In an osteoporotic rat model, the anabolic properties of BENS on bone mass were assessed by histomorphometric analyses. Ovariectomized (OVX) rats received daily intraperitoneal injections for 4 weeks. Bone formation rates (BFRs) for the cortical periosteal bone surface of the midshaft tibia were 383.2, 223.9, 308.8, 304.9, and 370.9 µm3/µm2/year, and for the trabecular surface were 82.2, 113, 212.1, 157, and 165 µm3/µm2/year for the sham, OVX, PTH, 3 mg/kg BENS, and 30 mg/kg BENS groups, respectively. BENS increased both trabecular and cortical BFRs. It generated better results on cortical periosteal bone surface than did PTH. Taken together, these findings suggest that BENS promotes osteoblast survival due to its effects on altering the balance between pro-apoptotic and anti-apoptotic proteins. In addition, in vivo studies revealed that BENS enhanced cartilage formation in Xenopus and BFRs in rats. Therefore, BENS may possess anabolic bone/cartilage properties.
16

HIF-1α regulates CD55 expression in airway epithelium

Pandya, Pankita Hemant 08 June 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Rationale: CD55 down-regulation on airway epithelium correlates with local complement activation observed in hypoxia-associated pulmonary diseases. Therefore, we hypothesized that induction of hypoxia inducible factor 1 alpha (HIF-1α) in hypoxic airway epithelium, mediates CD55 down-regulation. Methods: Chetomin and HIF-1α siRNA inhibited HIF-1α in hypoxic SAECs (1% O2), and mice lungs (10% O2). DMOG mediated HIF-1α stabilization in normoxic SAECs and mice lungs (21% O2). Transduction of SAECs with AdCA5 also stabilized HIF-1α. CD55 and CA9 transcripts were measured by RT-PCR. CD55 and HIF-1α protein expression was assessed by western blots. In vivo, immunohistochemistry (IHC) confirmed CD55 and HIF-1α expression. C3a and C5a levels in bronchoalveolar lavage fluid (BALF) were measured by ELISA. Results: HIF-1α was induced in 6 hour hypoxic SAECs (p<0.05), but CD55 transcripts were repressed (p&lt;0.05). CD55 protein was down-regulated by 72 hours (p<0.05). CA9 transcripts were elevated by 48 -72 hours (p<0.05 and p<0.01, respectively). In vivo, CD55 transcripts and protein were down- regulated by 24 hours post-hypoxia (p<0.01) which corresponded to complement activation (p<0.05) in BALF. However, CA9 was increased (p<0.01). Chetomin (100nM) treatment in 6 hour hypoxic SAECs, recovered CD55 transcripts (p<0.01) and protein (p<0.05), but down-regulated CA9 (p<0.05). Similarly, in vivo chetomin (1mg/ml) treatment recovered CD55 protein (p<0.01) and down-regulated CA9 (p<0.01). Silencing HIF-1α (50nM) in hypoxic SAECs restored CD55 transcripts by 6 hours (p<0.05), and protein expression by 24 hours (p<0.05). However, CA9 was repressed (p<0.01). In vivo silencing of HIF-1α (50µg) restored CD55 protein expression (p<0.05) but down-regulated CA9 (p<0.05). Stabilizing HIF-1α in normoxic SAECs via DMOG (1µM), down-regulated CD55 transcripts and protein (p<0.01), but increased CA9 within 6-24 hours (p<0.05 and p<0.01, respectively). HIF-1α induction by DMOG (1mg/ml) in normoxic mice lungs down-regulated CD55 transcripts (p<0.01) and protein (p<0.01), but increased CA9 (p<0.05). Induction of HIF-1α in AdCA5 (50 PFUs/cell) transduced normoxic SAECs, resulted in CD55 protein down-regulation (p<0.05), but increased CA9 (p<0.001). Conclusions: HIF-1α down-regulates CD55 on airway epithelium. Targeting this mechanism may be a potential therapeutic intervention for attenuating complement activation in hypoxic pulmonary diseases.
17

Molecular analysis of human t-cell leukemia virus regulatory and accessory proteins

Younis, Ihab H. 10 August 2005 (has links)
No description available.
18

In vitro and in vivo study of the roles of hepcidin in the brain. / Hepcidin在腦內功能的離體以及在體研究 / 鐵調素在腦內功能的離體以及在體研究 / CUHK electronic theses & dissertations collection / Hepcidin zai nao nei gong neng de li ti yi ji zai ti yan jiu / Tie diao su zai nao nei gong neng de li ti yi ji zai ti yan jiu

January 2011 (has links)
Hepcidin is a well-known iron-regulatory hormone that plays a key role in maintaining peripheral iron homeostasis. The presence and wide-spread distribution of hepcidin in the brain suggests that this peptide may also be an important player in brain iron homeostasis. In this study, we tested the hypothesis that hepcidin exerts an important role in the regulation of brain iron content, which might benefit iron-associated NDs such as PD. We also examined the hypothesis that hepcidin could control iron transport processes via regulating iron transport proteins in the brain cells, thus maintaining brain iron homeostasis. / In conclusion, the results of the present study implied that hepcidin plays an important role in maintaining brain iron homeostasis. Hepcidin is beneficial for PD and this effect is related to its iron-regulatory effect via inhibiting iron accumulation in the substantia nigra. Hepcidin effectively controls iron uptake and release through regulating iron transport proteins expressions in the brain, which would contribute to brain iron homeostasis. Therefore, manipulation of hepcidin level in the brain has a potential to be developed into a novel preventive approach for the iron-associated NDs such as PD. / In the second part, we investigated the effect of hepcidin on the processes of iron uptake and release in the cultured brain cells including neurons, astrocytes and brain vascular endothelial cells (BVECs). The expressions of iron uptake proteins such as transferrin receptor 1 (TfR1) and divalent metal transporter 1 (DMT1) as well as the iron exporter ferroportin 1 (Fpn1) were also observed. We found that hepcidin reduced both iron uptake and release via decreasing iron transport proteins expressions in these brain cells, which would contribute to its iron regulatory effect. Finally, we further explored the mechanisms underlying the regulatory effect of hepcidin on the iron transporters in the last part, and found that the action of hepcidin in reducing TfR1 expression is a direct and cAMP-PKA (Cyclic Adenosine 3', 5'-monophosphate/ Protein Kinase-A) pathway-dependent event. / Iron is a transition trace metal essential for mammalian cellular and tissue viability. It also plays important roles in the central nervous system (CNS), including embryonic brain development, myelination, and neurotransmitters synthesis. However, abnormal iron accumulation has been demonstrated in a number of neurodegenerative diseases (NDs) such as Parkinson's (PD), Alzheimer's (AD) and Huntington's diseases (HD). Currently very little is known about the mechanisms involved in brain iron homeostasis and therefore it is not known why and how iron is abnormally increased in the brain. However, given the essential role that excess iron plays in the pathological processes in the NDs, to suppress the accumulated iron is expected to be an effective strategy to prevent and treat these NDs. / To investigate whether hepcidin could benefit iron-associated NDs including PD and whether this beneficial role is related to its iron-regulatory function in the brain, in the first part of study, we investigated the effects of hepcidin on the 6-hydroxydopamine (6-OHDA) in vitro and in vivo PD models. We found that in primary cultured mesencephalic (MES) neurons, hepcidin overexpression via adenovirus-hepcidin (Ad-hepcidin) infection prevented 6-OHDA-induced increase in cellular iron content and protected the MES neurons. In the 6-OHDA model of PD in vivo, overexpression of hepcidin in the substantia nigra via Ad-hepcidin intranigral injection significantly prevented iron accumulation and dopaminergic neurons loss in the pars compacta of substantia nigra (SNc). These effects were accompanied by a marked improvement in motor performance of the PD animals. These findings indicate that hepcidin could benefit iron-associated NDs such as PD and via its iron-regulatory role in the brain. / Du, Fang. / Adviser: Ya Ke. / Source: Dissertation Abstracts International, Volume: 73-06, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 152-173). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
19

Study of BRE expression and regulation. / Study of BRE expression & regulation

January 2006 (has links)
Tam Ka-ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 164-179). / Abstracts in English and Chinese. / Chapter Chapter one: --- Introduction --- p.4 / Chapter 1.1 --- Introduction of BRE --- p.4 / Chapter 1.1.1 --- Discovery of BRE --- p.4 / Chapter 1.1.2 --- cDNA sequence and amino acids sequence of BRE --- p.4 / Chapter 1.1.3 --- BRE expression level in Human and rat organs --- p.5 / Chapter 1.1.4 --- Expression of Human and mouse BRE in multiple isoforms --- p.6 / Chapter 1.1.4.1 --- BRE isoforms in Human --- p.6 / Chapter 1.1.4.2 --- BRE isoforms in mouse --- p.6 / Chapter 1.1.5 --- mRNA level of BRE upon stress --- p.7 / Chapter 1.1.6 --- BRE and steroidogenesis --- p.8 / Chapter 1.1.7 --- BRE and p55 tumor necrosis factor α (TNF) receptor --- p.9 / Chapter 1.1.8 --- BRE and NFkB activity --- p.9 / Chapter 1.1.9 --- Anti-apoptotic effect of BRE --- p.10 / Chapter 1.1.10 --- BRE enhances the growth of tumor cells --- p.12 / Chapter 1.1.11 --- BRE and its ubiquitination activity --- p.12 / Chapter 1.1.12 --- Regulation of Prohibitin and p53 expression and proliferation by BRE --- p.13 / Chapter 1.2 --- Regulation of transcription --- p.15 / Chapter 1.2.1 --- Cis-acting elements --- p.17 / Chapter 1.2.1.1 --- The TATA box --- p.18 / Chapter 1.2.1.2 --- The GC box and CAAT box --- p.18 / Chapter 1.2.1.3 --- The initiator (Inr) --- p.19 / Chapter 1.2.1.4 --- CpG islands --- p.20 / Chapter 1.2.2 --- Trans- acting protein factors --- p.21 / Chapter 1.2.2.1 --- Zinc finger domain --- p.21 / Chapter 1.2.2.2 --- Basic helix-turn-helix domain (bHLH) --- p.22 / Chapter 1.3 --- Hypothesis and Objectives --- p.23 / Chapter Chapter two: --- Materials and Methods --- p.25 / Chapter 2.1 --- Materials --- p.25 / Chapter 2.1.1 --- Primers used in polymerase chain reaction (PCR) and sequencing --- p.25 / Chapter 2.1.2 --- DNA clones used in the studies --- p.26 / Chapter 2.1.3 --- Materials for DNA manipulation --- p.27 / Chapter 2.1.4 --- Materials for protein manipulation --- p.28 / Chapter 2.1.5 --- Antibodies --- p.28 / Chapter 2.1.6 --- Chemical used in treatments --- p.29 / Chapter 2.1.7 --- Kits --- p.29 / Chapter 2.1.8 --- Culture media and reagents --- p.30 / Chapter 2.1.9 --- Instrumentation --- p.30 / Chapter 2.1.10 --- Bacterial strain used for transfection and cloning --- p.31 / Chapter 2.2 --- Methodologies --- p.36 / Chapter 2.2.1 --- Cell culture --- p.36 / Chapter 2.2.1.1 --- Monolayer cells --- p.36 / Chapter 2.2.1.2 --- Suspension cell --- p.36 / Chapter 2.2.2 --- Identification of the transcriptional start site (TSS) of BRE by RNA ligase- mediated rapid amplification of 5,and 3,cDNA ends (RLM-RACE) --- p.37 / Chapter 2.2.3 --- Preparation of the 5' untranslated region (UTR) fragments of BRE --- p.39 / Chapter 2.2.3.1 --- Polymerase chain reaction (PCR) with Taq polymerase --- p.39 / Chapter 2.2.3.2 --- Polymerase chain reaction (PCR) with PhusiońёØ high-fidelity DNA.… --- p.40 / Chapter 2.2.4 --- Construction of the reporter constructs --- p.42 / Chapter 2.2.5 --- Cell transfection --- p.42 / Chapter 2.2.6 --- Dual-luciferase reporter assay --- p.43 / Chapter 2.2.7 --- Western blotting --- p.44 / Chapter 2.2.8 --- Cell cycle analysis by flow cytometry --- p.45 / Chapter 2.2.9 --- BRE antibody production --- p.43 / Chapter Chapter Three: --- Identification of transcriptional start sites and promoter region for BRE --- p.52 / Chapter 3.1 --- Identification of the transcriptional start sites for BRE --- p.52 / Chapter 3.2 --- Computational analysis of the 5' region of BRE --- p.57 / Chapter 3.2.1 --- Putative transcriptional factor binding sites --- p.57 / Chapter 3.2.2 --- CpG island --- p.58 / Chapter 3.3 --- Identification of BRE promoter --- p.64 / Chapter Chapter Four: --- Characterization of transcriptional regulation of BRE --- p.70 / Chapter 4.1 --- Regulation of BRE promoter by genotoxic stimuli and retinoic acid --- p.71 / Chapter 4.1.1 --- Etoposide --- p.71 / Chapter 4.1.2 --- 4-nitroquinoline-l -oxide (4NQO) --- p.79 / Chapter 4.1.3 --- Retinoic acid (RA) --- p.87 / Chapter 4.2 --- Regulation of BRE promoter by p53 protein and gamma irradiation --- p.90 / Chapter 4.2.1 --- Co-transfection with p53 plasmid --- p.90 / Chapter 4.2.2 --- Gamma irradiation (y irradiation) --- p.96 / Chapter 4.2.2.1 --- γ irradiation treatment of HeLa cells --- p.96 / Chapter 4.2.2.2 --- γ irradiation treatment of Balb/c 3T3 cells --- p.99 / Chapter 4.3 --- Regulation of BRE promoter by BRE --- p.103 / Chapter 4.3.1 --- Co-transfection with V5-tagged BRE (GS-BRE) --- p.103 / Chapter 4.3 2 --- Co-transfection with untagged BRE (pcDNA3-BRE) --- p.107 / Chapter 4.4 --- Regulation of BRE promoter by culture condition --- p.110 / Chapter 4.4.1 --- Cell density --- p.110 / Chapter 4.4.2 --- Serum deprivation --- p.114 / Chapter 4.5 --- Regulation of BRE promoter by kinase inhibitors --- p.120 / Chapter Chapter Five: --- BRE and cell cycle analysis --- p.127 / Chapter 5.1 --- Cell synchronization in G1 phase by aphidicolin (APC) --- p.127 / Chapter 5.1.1 --- Flow analysis --- p.128 / Chapter 5.1.2 --- Luciferase reporter assay --- p.128 / Chapter 5.1.3 --- Western blot analysis --- p.129 / Chapter 5.2 --- Cell synchronization in G2/M phase by colchicine (COL) --- p.137 / Chapter 5.2.1 --- Flow analysis --- p.137 / Chapter 5.2.2 --- Luciferase reporter assay --- p.137 / Chapter 5.2.3 --- Western blot analysis --- p.138 / Chapter 5.3 --- Cell cycle analysis of the treatments investigated by luciferase assays --- p.144 / Chapter Chapter Six: --- Discussion --- p.149 / Chapter 6.1 --- Study of BRE expression --- p.149 / Chapter 6.2 --- Study of BRE regulation --- p.154 / Chapter 6.3 --- Conclusion --- p.163 / Reference --- p.164 / Appendix (Raw data and statistical information of luciferase assays)
20

Modulation of the conformaiton [sic] and function of membrane-bound anti-apoptotic Bcl-2 by potential anti-cancer drugs

Tian, Xuefei. January 2008 (has links) (PDF)
Thesis--University of Oklahoma. / Bibliography: leaves 71-78.

Page generated in 0.0746 seconds