• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 61
  • 45
  • 14
  • 13
  • 13
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Acute Effects of Rearfoot Manipulation on Dynamic Standing Balance in Healthy Individuals

Wassinger, Craig A., Rockett, Ariel, Pitman, Lucas, Murphy, Matthew Matt, Peters, Charles 01 January 2014 (has links)
Dynamic standing balance is essential to perform functional activities and is included in the treatment of many lower extremity injuries. Physiotherapists utilize many methods to restore standing balance including stability exercises, functional retraining, and manual therapy. The purpose of this study was to investigate the effects of a rearfoot distraction manipulation on dynamic standing balance. Twenty healthy participants (age: 24.4 ± 2.8 years; height: 162.9 ± 37.7 cm; mass: 68.0 ± 4.8 kg; right leg dominant = 20) completed this study. Following familiarization, dynamic standing balance was assessed during: (1) an experimental condition immediately following a rearfoot distraction manipulation, and (2) a control condition. Dominant leg balance was quantified using the Y-balance test which measures lower extremity reach distances. Reach distances were normalized to leg length and measured in the anterior, posteromedial and posterolateral directions. Overall balance was calculated through the summing of all normalized directions. Paired t-tests and Wilcoxon rank tests were used to compare balance scores for parametric and non-parametric data as appropriate. Significance was set at 0.05 a priori. Effect size (ES) was calculated to determine the clinical impact of the manipulation. Increased reach distances (indicating improved balance) were noted following manipulation for overall balance (p = 0.03, ES = 0.26) and in the posteromedial direction (p = 0.01, ES = 0.42). Reach distances did not differ for the anterior (p = 0.11, ES = 0.16) or posterolateral (p = 0.11, ES = 0.25) components. Dynamic standing balance improved after a rearfoot distraction manipulation in healthy participants. It is hypothesized that manual therapy applied to the foot and ankle may be beneficial to augment other therapeutic modalities when working with patients to improve dynamic standing balance.
12

Electromyographic Response of Shoulder Muscles to Acute Experimental Subacromial Pain

Sole, Gisela, Osborne, Hamish, Wassinger, Craig 01 January 2014 (has links)
This study investigated effects of experimentally-induced subacromial pain, induced via hypertonic saline injection, on shoulder muscles activity. Electromyographic activity of 20 healthy participants was assessed for humeral elevation and descent for the control and experimental pain conditions, using fine wire electrodes for subscapularis and supraspinatus and surface electrodes for middle deltoid, upper trapezius, lower trapezius, infraspinatus, and serratus anterior. Normalized mean amplitudes were analyzed for each muscle for four phases for elevation and descent, respectively. Repeated measures analysis of variances (ANOVAs) were used to determine differences between muscle activity in the control and experimental condition for the four phases of elevation and descent. Differences for mean normalized amplitudes were not significant during humeral elevation. Increased activity was found for the pain condition for serratus anterior and middle deltoid during the first (120-90°) and third (60-30°) parts and decreased activity for infraspinatus in the second half of descent (60-0°). No significant differences were found during descent for upper and lower trapezius, subscapularis and supraspinatus. While increased serratus anterior activity during 60-30° of descent may be protective, increased middle deltoid and decreased infraspinatus activity during the same range may threaten subacromial tissues in that range. Overall the changes in muscle activation were individual specific, particularly during the concentric elevation phase.
13

Reported Mechanisms of Shoulder Injury During the Baseball Throw

Wassinger, Craig A., Myers, Joseph B. 01 October 2011 (has links)
Background: Shoulder complex injuries are common among overhand throwing athletes. These injuries often manifest as a result of habitual sport performance and often lead to time loss injuries. The mechanisms of these injuries are often non-traumatic and theories on how shoulder injuries manifest differ. Objectives: To describe the proposed mechanisms of commonly reported shoulder injuries as they relate to the phases of the throwing motion. Major findings: Shoulder injuries commonly involve rotator cuff muscles and tendons, scapulothoracic muscles, glenohumeral joint labrum, proximal humeral epiphysis, glenohumeral joint capsule, biceps muscle and tendon, and subacromial bursa. The injuries found in these tissues and their purported mechanisms of injury during the throw vary. Conclusions: The late cocking and deceleration phases have been implicated with the largest number of associated pathologies. Multiple injuries were theorized to occur at more than one phase of the throwing motion. Consensus has not been achieved on the provocative events leading to shoulder injury during the throwing motion.
14

Roles of physiotherapy in primary health care: Awareness and perceptions of other health care professionals in Rivers East Senatorial District, Rivers State, Nigeria

Akeneh, Ukari Josiah Smith January 2019 (has links)
Magister Scientiae (Physiotherapy) - MSc(Physio) / BACKGROUND: Access to basic health care services through the primary health care (PHC) settings, was affirmed as a fundamental human right by the World health organisation (WHO) in 1978 in Alma Ata (Kazakhstan). Internationally, interdisciplinary collaboration among health care professionals (HCPs) have been the preferred approach to addressing the health and psychosocial needs of the populace. The PHC being the first point of contact for most Nigerians and the cornerstone of health care policies in Nigeria, covers promotive, preventative, curative and rehabilitative services. Although, Physiotherapy has ideally qualified personnel to contribute to the attainment of the goals and objectives of the PHC policies, these services are mostly carried out by other HCP’s subdivided as clinicians (medical doctors, dentists, nurses/midwives, optometrists, pharmacists, radiographers, laboratory scientists) and clinical assistants (pharmacy technicians, radiography technicians, laboratory technicians and community health extension workers). Physiotherapy services are mostly concentrated at tertiary and secondary health care settings. AIM: To determine the awareness and explore the perceptions of clinicians and clinical assistants employed in the type 3 primary health care (PHC) settings of Rivers East Senatorial district of Rivers State, Nigeria, regarding the roles of Physiotherapy in a PHC setting.
15

Rehabilitative training effects on cell proliferation after cortical ischemic damage

Maldonado, Monica Aura 14 December 2010 (has links)
The main goal of this dissertation was to investigate if rehabilitative training after ischemic damage can increase cell proliferation and encourage the differentiation and maintenance of newly formed neurons. For all studies, I utilized a rehabilitative training task which has repeatedly been found to enhance behavioral performance after ischemic lesions of the sensorimotor cortex. Training was focused on the impaired forelimb in order to (1) target forelimb deficits induced by the lesions and (2) engage remaining cortex in potential plastic events. The level of cell proliferation was investigated by measuring and phenotyping cells labeled with a mitotic marker (bromodeoxyuridine) in the peri-lesion area and various other regions. First, in an animal model of cortical ischemia, the level of cell proliferatoin measured in rehabilitated animals after ischemic damage was significantly decreased in peri-lesion cortex compared to non-rehabilitated animals. In order to investigate which component of cell generation, proliferation or maintenance, was affected by rehabilitative training, pulse labeling of new cells followed by short or long term training periods was accomplished. This study revealed thatrehabilitative training had increased cell proliferation that occurred early after ischemic damage and the maintenance of these early generated cells were significantly increased in the peri-lesion cortex of rehabilitated animals compared to controls. Lastly, in order to verify the results of the first study (experience induced reduction of new cells in periinfarct tissue) pulse labeling of new cells during a mid-time point of rehabilitation period after ishemic lesions was employed and resulted in the same significantly reduced level of new cells in peri-infarct tissue of rehabilitated animals compared to controls. In all studies, the proportion of the neuronal and astrocyte phenotype of newly generated cells was not significantly affected by rehabilitative training after ischemic damage. However, a significant increased accumulation of new microglia was seen in rehabilitated animals, but reactive microglia produced early after ischemic damage were not significantly maintained which indicates a possible dual role that microglia during post-operative rehabilitative training. Together these studies indicate that functionally beneficial behavioral experience can affect cell proliferative responses, and mainitenance of newly generated non-neuronal cells early after ischemic damage. / text
16

Promoting restorative neural plasticity with motor cortical stimulation after stroke-like injury in rats.

O'Bryant, Amber Jo 18 November 2011 (has links)
In adult rats, following unilateral stroke-like injury to the motor cortex, there is significant loss of function in the forelimb contralateral to the ischemic damage. In the remaining motor cortex, changes in neuronal activation patterns and connectivity are induced following motor learning and rehabilitation in the brains of adult animals. Rehabilitative training promotes functional recovery of the impaired forelimb following motor cortical strokes; however, its benefits are most efficacious when coupled with other rehabilitative treatments. Multiple lines of evidence suggest that focal cortical electrical stimulation (CS) enhances the effectiveness of rehabilitative training (RT) and promotes changes in neural activation and plasticity in the peri-lesion motor cortex. Specific examples of plastic events include increases in dendritic and synaptic density in the peri-lesion cortex following CS/RT compared to rehabilitative training alone. The objective of these studies was to investigate which conditions, such as timing and method of delivery of CS, when coupled with RT, are most efficacious in promoting neuronal plasticity and functional recovery of the impaired forelimb following ischemic cortical injury in adult animals. The central hypothesis of these dissertation studies is that, following unilateral stroke-like injury, CS improves the functional recovery of the impaired forelimb and promotes neural plasticity in remaining motor cortex when combined with RT. This hypothesis was tested in a series of experiments manipulating post-ischemic behavioral experience with the impaired forelimb. Adult rats were proficient in a motor skill (Single Pellet Retrieval Task) and received ischemic motor cortex lesion that caused impairments in the forelimb. Rats received daily rehabilitative training on a tray reaching task with or without concurrent cortical stimulation. Epidural cortical stimulation, when paired with rehabilitative training, resulted in enhanced reaching performance compared to RT alone when initiated 14 days after lesion. These results were found to be maintained well after the treatment period ended. Rats tested 9-10 months post-rehabilitative training on the single pellet retrieval task continued to have greater reaching performance compared to RT alone. However, delayed onset of rehabilitative training (3 months post-infarct) indicated that CS does not further improve forelimb function compared to RT along. It was further established that CS delivered over the intact skull (transcranial stimulation) of the lesioned motor cortex was not a beneficial adjunct to rehabilitative training. Together these dissertation studies provide insight into the effectiveness and limitations of CS on behavioral recovery. The findings in these studies are likely to be important for understanding how post-stroke behavioral interventions and adjunct therapies could be used to optimize brain reorganization and functional outcome. / text
17

Scapular Muscle Assessment in Patients with Lateral Epicondylalgia

Day, Joseph M 01 January 2013 (has links)
The role rehabilitation plays in the management of patients with lateral epicondylalgia (LE) remains elusive secondary to high recurrence rates. Addressing scapular muscle deficits may be important in the rehabilitation of patients with LE. However, it is unknown if scapular muscle impairments exist in a working population of patients with LE. The purpose of this dissertation was to assess scapular muscle strength and endurance in a working population of patients with LE. Clinical scapular muscle assessment tools are limited in their ability to isolate specific muscles. Rehabilitative ultrasound imaging (RUSI) is a potentially useful tool but few studies have investigated its utility. Absolute muscle thickness measurements were obtained on healthy individuals for the lower trapezius (LT) and serratus anterior (SA) under three conditions (arm at rest, arm elevated with a low load, arm elevated with a high load). For both the LT and SA, a significant distinction could be made in muscle thickness between rest and a loaded condition but not between the two load conditions. Furthermore, excellent reliability was demonstrated for both muscles. It is unknown whether arm dominance plays a role in scapular muscle assessments. Therefore, healthy individuals between the ages of 30 and 65 were recruited to compare the effect of arm dominance on scapular muscle strength, endurance, and change in thickness measured by RUSI. Results indicate that arm dominance does significantly affect some measures of scapular muscle strength and endurance. However, the differences between the dominant and non-dominant limbs were not beyond measurement error. Scapular muscle strength, endurance, and change in muscle thickness of the LT and SA were assessed in 28 patients presenting with signs and symptoms consistent with LE. LT strength, SA strength, middle trapezius strength, endurance, and change in SA thickness were significantly less in patients with LE compared to matched controls. SA and LT strength were significantly less in the involved limb compared to the uninvolved limb in patients with LE. The results suggest that assessing scapular muscle endurance as well as LT and SA strength is indicated when evaluating patients with LE, and the results should be compared to normative data.
18

The Impact of Experimental Pain on Shoulder Movement During an Arm Elevated Reaching Task in a Virtual Reality Environment

Dupuis, Frédérique, Sole, Gisela, Wassinger, Craig A., Osborne, Hamish, Beilmann, Mathieu, Mercier, Catherine, Campeau-Lecours, Alexandre, Bouyer, Laurent J., Roy, Jean S. 01 September 2021 (has links)
Background: People with chronic shoulder pain have been shown to present with motor adaptations during arm movements. These adaptations may create abnormal physical stress on shoulder tendons and muscles. However, how and why these adaptations develop from the acute stage of pain is still not well-understood. Objective: To investigate motor adaptations following acute experimental shoulder pain during upper limb reaching. Methods: Forty participants were assigned to the Control or Pain group. They completed a task consisting of reaching targets in a virtual reality environment at three time points: (1) baseline (both groups pain-free), (2) experimental phase (Pain group experiencing acute shoulder pain induced by injecting hypertonic saline into subacromial space), and (3) Post experimental phase (both groups pain-free). Electromyographic (EMG) activity, kinematics, and performance data were collected. Results: The Pain group showed altered movement planning and execution as shown by a significant increased delay to reach muscles EMG peak and a loss of accuracy, compared to controls that have decreased their mean delay to reach muscles peak and improved their movement speed through the phases. The Pain group also showed protective kinematic adaptations using less shoulder elevation and elbow flexion, which persisted when they no longer felt the experimental pain. Conclusion: Acute experimental pain altered movement planning and execution, which affected task performance. Kinematic data also suggest that such adaptations may persist over time, which could explain those observed in chronic pain populations.
19

CTRP3 and Serum Triglycerides in Children Aged 7-10 Years

Alamian, Arsham, Marrs, Jo Ann, Clark, W. Andrew, Thomas, Kristy L., Peterson, Jonathan M. 01 December 2020 (has links)
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Introduction The prevalence of obesity-related disorders has been steadily increasing over the past couple of decades. Diseases that were once only detected in adults are now prevalent in children, such as hyperlipidemia. The adipose tissue-derived hormonal factor C1q TNF Related Protein 3 (CTRP3) has been linked to triglyceride regulation especially in animal models. However, the relationship between circulating CTRP3 levels and obesity-related disorders in human subjects is controversial. CTRP3 can circulate in different oligomeric complexes: trimeric (kDa), middle molecular weight (100–300 kDa), and high molecular weight (HMW) oligomeric complexes (>300 kDa). Previous work has identified that it is not the total amount of CTRP3 present in the serum, but the specific circulating oligomeric complexes that appear to be indicative of the relationship between CTRP3 and serum lipids levels. However, this work has not been examined in children. Therefore, the purpose of this study was to compare the levels of different oligomeric complexes of CTRP3 and circulating lipid levels among young children (aged 7–10 years). Methods Morphometric data and serum samples were collected and analyzed from a cross-sectional population of 62 children of self-identified Hispanic origin from a community health center, between 2015 and 2016. Serum analysis included adiponectin, insulin, leptin, ghrelin, glucagon, C-reactive peptide, triglyceride, cholesterol, IL-6, TNF, and CTRP3. Correlation analyses were conducted to explore the relationships between CTRP3 and other biomarkers. Results Total CTRP3 concentrations were significantly positively correlated with total cholesterol and HDL cholesterol. Whereas, HMW CTRP3 was not significantly associated with any variable measured. Conversely, the middle molecular weight (MMW) CTRP3 was negatively correlated with triglycerides levels, and very low-density lipoprotein (VLDL), insulin, and body mass index (BMI). The negative correlations between MMW CTRP3 and triglycerides and VLDLs were particularly strong (r2 = -0.826 and -0.827, respectively). Conclusion Overall, these data indicate that the circulating oligomeric state of CTRP3 and not just total CTRP3 level is important for understanding the association between CTRP3 and metabolic diseases. Further, this work indicates that MMW CTRP3 plays an important role in triglyceride and VLDL regulation which requires further study.
20

Fatigue, Induced via Repetitive Upper-Limb Motor Tasks, Influences Trunk and Shoulder Kinematics During an Upper Limb Reaching Task in a Virtual Reality Environment

Dupuis, Frédérique, Sole, Gisela, Wassinger, Craig, Bielmann, Mathieu, Bouyer, Laurent J., Roy, Jean S. 01 April 2021 (has links)
Background Efficient shoulder movement depends on the ability of central nervous system to integrate sensory information and to create an appropriate motor command. Various daily encountered factors can potentially compromise the execution of the command, such as fatigue. This study explored how fatigue influences shoulder movements during upper limb reaching. Methods Forty healthy participants were randomly assigned to one of two groups: Control or Fatigue Group. All participants completed an upper limb reaching task at baseline and post-experimental, during which they reached four targets located at 90° of shoulder abduction, 90° external rotation at 90° abduction, 120° scaption, and 120° flexion in a virtual reality environment. Following the baseline phase, the Fatigue Group completed a shoulder fatigue protocol, while Controls took a 10-minute break. Thereafter, the reaching task was repeated. Upper limb kinematic (joint angles and excursions) and spatiotemporal (speed and accuracy) data were collected during the reaching task. Electromyographic activity of the anterior and middle deltoids were also collected to characterize fatigue. Two-way repeated-measures ANOVA were performed to determine the effects of Time, Group and of the interaction between these factors. Results The Fatigue group showed decreased mean median power frequency and increased electromyographic amplitudes of the anterior deltoid (p < 0.05) following the fatigue protocol. Less glenohumeral elevation, increased trunk flexion and rotation and sternoclavicular elevation were also observed in the Fatigue group (Group x Time interaction, p < 0.05). The Control group improved their movement speed and accuracy in post-experimental phase, while the Fatigue group showed a decrease of movement speed and no accuracy improvement (Group x Time interaction, p < 0.05). Conclusion In a fatigued state, changes in movement strategy were observed during the reaching task, including increased trunk and sternoclavicular movements and less glenohumeral movement. Performance was altered as shown by the lack of accuracy improvement over time and a decrease in movement speed in the Fatigue group.

Page generated in 0.082 seconds