• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 346
  • 166
  • 47
  • 25
  • 10
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 798
  • 405
  • 359
  • 206
  • 169
  • 139
  • 122
  • 108
  • 96
  • 88
  • 84
  • 82
  • 77
  • 75
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Visualizing light cones in space-time

Elmabrouk, T. January 2013 (has links)
Although introductory courses in special relativity give an introduction to the causal structure of Minkowski space, it is common for causal structure in general space- times to be regarded as an advanced topic, and omitted from introductory courses in general relativity, although the related topic of gravitational lensing is often included. Here a numerical approach to visualizing the light cones in exterior Schwarzschild space taking advantage of the symmetries of Schwarzschild space and the conformal invariance of null geodesics is formulated, and used to make some of these ideas more accessible. By means of the Matlab software developed, a user is able to produce figures showing how light cones develop in Schwarzschild space, starting from an arbitrary point and developing for any length of time. The user can then interact with the figure, changing their point of view, or zooming in or out, to investigate them. This approach is then generalised, using the symbolic manipulation facility of Matlab, to allow the user to specify a metric as well as an initial point and time of development. Finally, the software is demonstrated with a selection of metrics.
292

Instabilités gravitationnelles de champs de Yang-Mills et de champs scalaires dans l'univers primordial/ Gravitational instability of Yang-Mills and scalar fields in the early universe

Füzfa, André ER 28 January 2004 (has links)
Le mécanisme d'instabilité gravitationnelle d'un champ de Yang-Mills est étudié via l'intégration numérique de la formulation hamiltonienne du système Einstein-Yang-Mills décrivant le couplage d'un champ de jauge à la gravitation. Une évolution en deux temps est mise en évidence: une dilution des fluctuations, conséquence de l'invariance conforme du champ, apparaît en premier lieu ; elle est suivie d'un régime d'oscillations croissantes lorsque l'on s'éloigne suffisamment de la solution homogène. Une comparaison instructive avec le mécanisme d'instabilité gravitationnelle du champ scalaire est également envisagée. Enfin, nous avons étudié l'influence de champs scalaires de quintessence sur la formation d'amas de matière noire grâce à la modification d'un code à N particules. Ceux-ci inhibent la formation des amas, en privilégiant des structures moins nombreuses et de faible masse, tout en produisant des différences assez significatives que pour permettre de discerner non seulement un modèle avec quintessence d'un autre plus conventionnel (avec constante cosmologique) mais également les divers modèles de quintessence entre eux. / The gravitational instability of Yang-Mills fields is studied by means of a numerical integration of the hamiltonian formulation of Einstein-Yang-Mills equations, which describe the coupling between gravitation and a gauge field. A two-step evolution appears to rule this mechanism: the fluctuations first dilute, as a sequel of the conformal invariance of the gauge theory; then, the fluctuations undergo oscillations of increasing amplitude as the solution moves away from the homogeneous one. An interesting comparison with the gravitational instability of a scalar field has also been made. Finally, we have established that the quintessence scalar fields inhibit the formation of dark matter halos. By analysing the results of a modified N-body code, we show that those fields produce less structures and lighter halos, and lead to significative differences that allow to distinguish either a quintessence scenario from a more conventional one with a cosmological constant either different quintessence models.
293

Cosmological Density Perturbations

Hultgren, Kristoffer January 2007 (has links)
<p>This thesis presents a brief review of gravitation and cosmology, and then gives an overview of the theory of cosmological perturbations; subsequently some applications are discussed, such as large-scale structure formation. Cosmological perturbations are here presented both in the Newtonian paradigm and in two di¤erent relativistic approaches. The relativistic approaches are (i) the metric approach, where small variations of the metric tensor are considered, and (ii) the covariant approach, which focusses on small variations of the curvature. Dealing with these two approaches also involves addressing the gauge problem –how to map an idealized world model into a more accurate world model.</p>
294

Relativizing linguistic relativity : Investigating underlying assumptions about language in the neo-Whorfian literature

Björk, Ingrid January 2008 (has links)
<p>This work concerns the linguistic relativity hypothesis, also known as the Sapir-Whorf hypothesis, which, in its most general form claims that ‘lan-guage’ influences ‘thought’. Past studies into linguistic relativity have treated various aspects of both thought and language, but a growing body of literature has recently emerged, in this thesis referred to as neo-Whorfian, that empirically investigates thought and language from a cross-linguistic perspective and claims that the grammar or lexicon of a particular language influences the speakers’ non-linguistic thought.</p><p>The present thesis examines the assumptions about language that underlie this claim and criticizes the neo-Whorfian arguments from the point of view that they are based on misleading notions of language. The critique focuses on the operationalization of thought, language, and culture as separate vari-ables in the neo-Whorfian empirical investigations. The neo-Whorfian stud-ies explore language primarily as ‘particular languages’ and investigate its role as a variable standing in a causal relation to the ‘thought’ variable. Tho-ught is separately examined in non-linguistic tests and found to ‘correlate’ with language.</p><p>As a contrast to the neo-Whorfian view of language, a few examples of other approaches to language, referred to in the thesis as sociocultural appro-aches, are reviewed. This perspective on language places emphasis on prac-tice and communication rather than on particular languages, which are vie-wed as secondary representations. It is argued that from a sociocultural per-spective, language as an integrated practice cannot be separated from tho-ught and culture. The empirical findings in the neo-Whorfian studies need not be rejected, but they should be interpreted differently. The findings of linguistic and cognitive diversity reflect different communicational practices in which language cannot be separated from non-language.</p>
295

Higher Dimensional Gravity, Black Holes and Brane Worlds

Carter, Benedict Miles Nicholas January 2006 (has links)
Current research is focussed on extending our knowledge of how gravity behaves on small scales and near black hole horizons, with various modifications which may probe the low energy limits of quantum gravity. This thesis is concerned with such modifications to gravity and their implications. In chapter two thermodynamical stability analyses are performed on higher dimensional Kerr anti de Sitter black holes. We find conditions for the black holes to be able to be in thermal equilibrium with their surroundings and for the background to be stable against classical tensor perturbations. In chapter three new spherically symmetric gravastar solutions, stable to radial perturbations, are found by utilising the construction of Visser and Wiltshire. The solutions possess an anti de Sitter or de Sitter interior and a Schwarzschild (anti) de Sitter or Reissner Nordstrom exterior. We find a wide range of parameters which allow stable gravastar solutions, and present the different qualitative behaviors of the equation of state for these parameters. In chapter four a six dimensional warped brane world compactification of the Salam-Sezgin supergravity model is constructed by generalizing an earlier hybrid Kaluza Klein / Randall Sundrum construction. We demonstrate that the model reproduces localized gravity on the brane in the expected form of a Newtonian potential with Yukawa type corrections. We show that allowed parameter ranges include values which potentially solve the hierarchy problem. The class of solutions given applies to Ricci flat geometries in four dimensions, and consequently includes brane world realisations of the Schwarzschild and Kerr black holes as particular examples. Arguments are given which suggest that the hybrid compactification of the Salam Sezgin model can be extended to reductions to arbitrary Einstein space geometries in four dimensions. This work furthers our understanding of higher dimensional general relativity, which is potentially interesting given the possibility that higher dimensions may become observable at the TeV scale, which will be probed in the Large Hadron Collider in the next few years.
296

Analysis and Visualization of Exact Solutions to Einstein's Field Equations

Abdelqader, Majd 02 October 2013 (has links)
Einstein's field equations are extremely difficult to solve, and when solved, the solutions are even harder to understand. In this thesis, two analysis tools are developed to explore and visualize the curvature of spacetimes. The first tool is based on a thorough examination of observer independent curvature invariants constructed from different contractions of the Riemann curvature tensor. These invariants are analyzed through their gradient fields, and attention is given to the resulting flow and critical points. Furthermore, we propose a Newtonian analog to some general relativistic invariants based on the underlying physical meaning of these invariants, where they represent the cumulative tidal and frame-dragging effects of the spacetime. This provides us with a novel and intuitive tool to compare Newtonian gravitational fields to exact solutions of Einstein's field equations on equal footing. We analyze the obscure Curzon-Chazy solution using the new approach, and reveal rich structure that resembles the Newtonian gravitational field of a non-rotating ring, as it has been suspected for decades. Next, we examine the important Kerr solution, which describes the gravitational field of rotating black holes. We discover that the observable part of the geometry outside the black hole's event horizon depends significantly on its angular momentum. The fields representing the cumulative tidal and frame-dragging forces change qualitatively at seven specific values of the dimensionless spin parameter of the black hole. The second tool we develop in this thesis is the accurate construction of the Penrose conformal diagrams. These diagrams are a valuable tool to explore the causal structure of spacetimes, where the entire spacetime is compactified to a finite size, and the coordinate choice is fixed such that light rays are straight lines on the diagram. However, for most spacetimes these diagrams can only be constructed as a qualitative guess, since their null geodesics cannot be solved. We developed an algorithm to construct very accurate Penrose diagrams based on numeric solutions to the null geodesics, and applied it to the McVittie metric. These diagrams confirmed the long held suspicion that this spacetime does indeed describe a black hole embedded in an isotropic universe. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2013-09-30 14:02:55.865
297

Causal structure in categorical quantum mechanics

Lal, Raymond Ashwin January 2012 (has links)
Categorical quantum mechanics is a way of formalising the structural features of quantum theory using category theory. It uses compound systems as the primitive notion, which is formalised by using symmetric monoidal categories. This leads to an elegant formalism for describing quantum protocols such as quantum teleportation. In particular, categorical quantum mechanics provides a graphical calculus that exposes the information flow of such protocols in an intuitive way. However, the graphical calculus also reveals surprising features of these protocols; for example, in the quantum teleportation protocol, information appears to flow `backwards-in-time'. This leads to question of how causal structure can be described within categorical quantum mechanics, and how this might lead to insight regarding the structural compatibility between quantum theory and relativity. This thesis is concerned with the project of formalising causal structure in categorical quantum mechanics. We begin by studying an abstract view of Bell-type experiments, as described by `no-signalling boxes', and we show that under time-reversal no-signalling boxes generically become signalling. This conflicts with the underlying symmetry of relativistic causal structure. This leads us to consider the framework of categorical quantum mechanics from the perspective of relativistic causal structure. We derive the properties that a symmetric monoidal category must satisfy in order to describe systems in such a background causal structure. We use these properties to define a new type of category, and this provides a formal framework for describing protocols in spacetime. We explore this new structure, showing how it leads to an understanding of the counter-intuitive information flow of protocols in categorical quantum mechanics. We then find that the formal properties of our new structure are naturally related to axioms for reconstructing quantum theory, and we show how a reconstruction scheme based on purification can be formalised using the structures of categorical quantum mechanics. Finally, we discuss the philosophical aspects of using category theory to describe fundamental physics. We consider a recent argument that category-theoretic formulations of physics, such as categorical quantum mechanics, can be used to support a variant of structural realism. We argue against this claim. The work of this thesis suggests instead that the philosophy of categorical quantum mechanics is subtler than either operationalism or realism.
298

Homogeneous Canonical Formalism and Relativistic Wave Equations

Jackson, Albert A. 01 1900 (has links)
This thesis presents a development of classical canonical formalism and the usual transition schema to quantum dynamics. The question of transition from relativistic mechanics to relativistic quantum dynamics is answered by developing a homogeneous formalism which is relativistically invariant. Using this formalism the Klein-Gordon equation is derived as the relativistic analog of the Schroedinger equation. Using this formalism further, a method of generating other relativistic equations (with spin) is presented.
299

Approaching the Singularity in Gowdy Universes

Edmonds, Bartlett Douglas, Jr. 01 January 2006 (has links)
It has been shown that the cosmic censorship conjecture holds for polarized Gowdy spacetimes. In the more general, unpolarized case, however, the question remains open. It is known that cylindrically symmetric dust can collapse to form a naked singularity. Since Gowdy universes comprise gravitational waves that are locally cylindrically symmetric, perhaps these waves can collapse onto a symmetry axis and create a naked singularity. It is known that in the case of cylindrical symmetry, event horizons will not form under gravitational collapse, so the formation of a singularity on the symmetry axis would be a violation of the cosmic censorship conjecture.To search for cosmic censorship violation in Gowdy spacetimes, we must have a better understanding of their singularities. It is known that far from the symmetry axes, the spacetimes are asymptotically velocity term dominated, but this property is not known to hold near the axes. In this thesis, we take the first steps toward understanding on and near axis behavior of Gowdy spacetimes with space-sections that have the topology of the three-sphere. Null geodesic behavior on the symmetry axes is studied, and it is found that in some cases, a photon will wrap around the universe infinitely many times on its way back toward the initial singularity.
300

Einstein's Equations in Vacuum Spacetimes with Two Spacelinke Killing Vectors Using Affine Projection Tensor Geometry

Lawrence, Miles D. 01 January 1994 (has links)
Einstein's equations in vacuum spacetimes with two spacelike killing vectors are explored using affine projection tensor geometry. By doing a semi-conformal transformation on the metric, a new "fiducial" geometry is constructed using a projection tensor fields. This fiducial geometry provides coordinate independent information about the underlying structure of the spacetime without the use of an explicit form of the metric tensor.

Page generated in 0.0415 seconds