Spelling suggestions: "subject:"delay"" "subject:"relay""
341 |
A Precoding Scheme for Semi-Blind Channel Estimation in Cooperative NetworksChen, Yen-cheng 01 August 2012 (has links)
In this thesis, we proposed a precoding scheme for semi-blind channel estimation in amplify-and-forward (AF) multipath two-way relay networks (TWRN), where two terminals exchange their information through multi-relays. The precoding scheme, which diminishes computational complexity of semi-blind channel estimator, is used to distinguish received signal at both terminals from multi-relays.
By applying a non-redundant linear precoding scheme at multi-relays, we proposed a semi-blind channel estimation to estimate the channel impulse response (CIR) of direct link and the cascaded source-relay-terminal links. Firstly, semi-blind channel estimation adopts least-square (LS) estimation to find the CIR of direct link between both terminals using a smaller number of training symbols. Secondly, the CIR of the cascaded source-relay-terminal links are obtained through second-order statistics (SOS) of received signals at both terminals.
Consequently, the proposed scheme can effectively reduce the computational complexity and enhance the spectral efficiency in overall system. Simulation results corroborate the effectiveness of the proposed scheme.
|
342 |
Delay-aware Scheduling in Wireless Coding Networks: To Wait or Not to WaitRamasamy, Solairaja 2010 December 1900 (has links)
Wireless technology has become an increasingly popular way to gain network access. Wireless networks are expected to provide efficient and reliable service and support a broad range of emerging applications, such as multimedia streaming and video conferencing. However, limited wireless spectrum together with interference and fading pose signi cant challenges for network designers. The novel technique of network coding has a significant potential for improving the throughput and reliability of wireless networks by taking advantage of the broadcast nature of wireless medium. Reverse carpooling is one of the main techniques used to realize the benefits of network coding in wireless networks. With reverse carpooling, two flows are traveling in opposite directions, sharing a common path. The network coding is performed in the intermediate (relay) nodes, which saves up to 50% of transmissions. In this thesis, we focus on the scheduling at the relay nodes in wireless networks with reverse carpooling. When two packets traveling in opposite directions are available at the relay node, the relay node combines them and broadcasts the resulting packet. This event is referred to as a coding opportunity. When only one packet is available, the relay node needs to decide whether to wait for future coding opportunities, or to transmit them without coding. Though the choice of holding packets exploits the positive aspects of network coding, without a proper policy in place that controls how long the packets should wait, it will have an adverse impact on delays and thus the overall network performance. Accordingly, our goal is to find an optimal control strategy that delicately balances the tradeoff between the number of transmissions and delays incurred by the packets. We also address the fundamental question of what local information we should keep track of and use in making the decision of of whether to transmit uncoded packet or wait for the next coding opportunity. The available information consists of queue length and time stamps indicating the arrival time of packets in the queue. We could also store history of all previous states and actions. However, using all this information makes the control very complex and so we try to find if the overhead in collecting waiting times and historical information is worth it. A major contribution of this thesis is a stochastic control framework that uses state information based on what can be observed and prescribes an optimal action. For that, we formulate and solve a stochastic dynamic program with the objective of minimizing the long run average cost per unit time incurred due to transmissions and delays. Subsequently, we show that a stationary policy based on queue lengths is optimal, and the optimal policy is of threshold-type. Then, we describe a non-linear optimization procedure to obtain the optimal thresholds. Further, we substantiate our analytical ndings by performing numerical experiments under varied settings. We compare systems that use only queue length with those where more information is available, and we show that optimal control that uses only the queue length is as good as any optimal control that relies on knowing the entire history.
|
343 |
Quality Of Service Aware Dynamic Admission Control In Ieee 802.16j Non-transparent Relay NetworksKilic, Eda 01 February 2010 (has links) (PDF)
Today, telecommunication is improving rapidly. People are online anywhere anytime. Due to
increasing demand in communication, wireless technologies are progressing quickly trying to
provide more services in a wide range. In order to address mobility and connectivity requirements
of users in wide areas, Worldwide Interoperability for Microwave Access (Wimax) has
been introduced as a forth generation telecommunication technology.
Wimax, which is also called Metropolitan Area Network (MAN), is based on IEEE 802.16
standard where a Base Station (BS) provides last mile broadband wireless access to the end
users known as Mobile Stations (MS). However, in places where high constructions exist,
the signal rate between MS and BS decreases or even the signal can be lost completely due
to shadow fading. As a response to this issue, recently an intermediate node specification,
namely Relay Station, has been defined in IEEE 802.16j standard for relaying, which provides
both throughput enhancement and coverage extension. However, this update has introduced a
new problem / call admission control in non-transparent relay networks that support coverage
extension.
In this thesis, a Quality of Service (QoS) aware dynamic admission control algorithm for
IEEE 802.16j non-transparent relay networks is introduced. Our objectives are admitting
more service flows, utilizing the bandwidth, giving individual control to each relay station
(RS) on call acceptance and rejection, and finally not affecting ongoing service flow quality in
an RS due to the dense population of service flows in other RSs. The simulation results show
that the proposed algorithm outperforms the other existing call admission control algorithms.
Moreover, this algorithm can be interpreted as pioneer call admission control algorithm in
IEEE 802.16j non-transparent networks.
|
344 |
Distribution system reliability enhancementYu, Xuebei 17 May 2011 (has links)
Practically all everyday life tasks from economic transactions to entertainment depend on the availability of electricity. Some customers have come to expect a higher level of power quality and availability from their electric utility. Federal and state standards are now mandated for power service quality and utilities may be penalized if the number of interruptions exceeds the mandated standards. In order to meet the requirement for safety, reliability and quality of supply in distribution system, adaptive relaying and optimal network reconfiguration are proposed. By optimizing the system to be better prepared to handle a fault, the end result will be that in the event of a fault, the minimum number of customers will be affected. Thus reliability will increase.
The main function of power system protection is to detect and remove the faulted parts as fast and as selectively as possible. The problem of coordinating protective relays in electric power systems consists of selecting suitable settings such that their fundamental protective function is met under the requirements of sensitivity, selectivity, reliability, and speed. In the proposed adaptive relaying approach, weather data will be incorporated as follows. By using real-time weather information, the potential area that might be affected by the severe weather will be determined. An algorithm is proposed for adaptive optimal relay setting (relays will optimally react to a potential fault). Different types of relays (and relay functions) and fuses will be considered in this optimization problem as well as their coordination with others. The proposed optimization method is based on mixed integer programming that will provide the optimal relay settings including pickup current, time dial setting, and different relay functions and so on.
The main function of optimal network reconfiguration is to maximize the power supply using existing breakers and switches in the system. The ability to quickly and flexibly reconfigure the power system of an interconnected network of feeders is a key component of Smart Grid. New technologies are being injected into the distribution systems such as advanced metering, distribution automation, distribution generation and distributed storage. With these new technologies, the optimal network reconfiguration becomes more complicated. The proposed algorithms will be implemented and demonstrated on a realistic test system. The end result will be improved reliability. The improvements will be quantified with reliability indexes such as SAIDI.
|
345 |
Role Of Idiotypic Anti-Idiotypic Network In The Sustenance Of Immunological MemoryGangadhar, Vidya 02 1900 (has links)
Living amidst a milieu of pathogenic organisms, vertebrates are in constant threat of contracting one or the other disease. As a mechanism of protection against such ‘invasions’, the vertebrate immune system has evolved to serve two main functions. One, to generate a specific immune response against the invading pathogen (in the from of specific antibodies and cell mediated immune responses). And two, to ‘remember’ the pathogen after the first exposure and mount a heightened and quicker immune response upon subsequent encounters. This phenomenon is called immunological memory, or anamnestic response and is achieved by the generation of memory B and T cells. The generation of specific Immunological memory is indeed the most important requirement/purpose of prophylactic vaccination
Though different mechanisms are known to operate to maintain memory B and T cells, some aspects are still debatable. The ‘relay hypothesis’ (Nayak etal., Immunology.102(4)(2001); Nayak R etal., Microbes. Infect.(2005)), addresses some of those key issues. It describes that antigen specific memory B cells can be maintained by the interaction of membrane bound idiotypic (Id, Ab1) and anti-idiotypic (α-Id, Ab2) antibodies on B cells. Anti-Ids binding to idiotopes on Abs (Ab1) are known to be potential regulators of immunity in a variety of diseases, such as autoimmunity, cancer as well as viral, bacterial or parasitic infections. The relay hypothesis outlines the mechanism of persistence of memory cells in the absence of persisting antigen. This is achieved through the ‘internal image’ of the antigen on the Ab2 variable region, which serves as surrogate antigen thus helping in maintenance of immunological memory even in the absence of persisting antigen. It also explains that all antigens, protein or nonprotein can be converted to the common “coinage” of internal image peptides, otherwise called peptido-mimics. Peptido-mimics that have similar binding properties to MHC as the antigenic epitope, will ensure that the antigen specific memory T cells are also maintained. Hence T cell activation could also occur in the absence of nominal antigen, a potentially important process in T-B cooperation and immune regulation.
Scope and objectives of this work:
To demonstrate the presence of idiotypic and cognate anti-idiotypic antibody for the given antigen
To examine the likelihood of the three dimensional structural similarity between antigen and Ab2 variable region
To demonstrate the presence of peptido-mimics of the antigenic epitope in the Ab2 variable region; and if those peptido-mimics have structural and functional
similarity with antigenic peptides when bound to MHC-I
To examine the (immunological) memory associated phenotype of thediotypic anti-idiotypic B cells.
The antigen of choice for the current study is Heamagglutinin-Neuraminidase (HN) protein of peste des petits ruminants virus (PPRV). Idiotypic (Id, Ab1), antiidiotypic (α-Id, Ab2) hybridoma against a deletion mutant of PPRV HN were generated and characterized. These hybridoma served as surrogate B cells for the study of Id α-Id B cell interactions. Anti-anti-idiotypic (Ab3) lymphocytes were also generated by immunizing syngenic BALB/c mice with Ab2 hybridoma. Results not only indicated the interplay of idiotypic and anti-idiotypic B and T cells in this cascade but also the mimicry of the antigen by Ab2. Ab2 Mab could recognize idiotopes of anti-PPRV HN Ab1 raised in diff species of animals, thus demonstrating that Ab2 was indeed an antigen mimic that interacts with Ab1 paratope irrespective of which species the Ab1 originates from. Ab2 Mab also mimicked the antigen (Hemagglutinin-neuraminidase) in functional assays by bringing about hemagglutination. Similarly, Polyclonal Ab3 which reacts with Ab2 Mab and with antigen, inhibits hemagglutination, just as Ab1 does, albeit to a lesser extent. This suggests Ab3 has functional similarity with Ab1.
It is imperative that T cells be involved in this network of B cells for the maintenance of antigen specific immunological memory. This is because B cells require T cell help in the form of cytokines for proliferation and Cytotoxic T Lymphocytes (CTLs) are needed to control the specific population of Id and anti-Id B cells to maintain homeostasis.
The Ab2 hybridoma as well as soluble Ab2 stimulated the proliferation of antigen specific T cells. Similarly, Ab3 splenocytes were stimulated to proliferate by the Ab2 as well as the antigen. Peptides generated from monoclonal Ab2 heavy and light chain variable regions (VH and VL) showed structural and functional similarity to the antigenic peptides in terms of p-MHC binding. These peptides stimulated the proliferation of antigen and Ab2 specific T cells, and also triggered 4-5 times higher CTL targeted cell lysis of peptide pulsed RMAS-Kd cells, as compared to a control peptide. VH, VL and antigenic peptides stabilized MHC-I on the cell surface of the TAP deficient, RMAS-Kd cell line for upto six hrs as compared to the ‘empty’ MHC-I, which remained on the surface only for one hr.
The presence of peptido-mimics in the Ab2 variable region, which have structural similarity with antigenic peptide (when bound to MHC I), was also established using insilico software tools. Antigenic peptides and VH and VL peptides were modeled onto MHC-I crystal structures using the molecular modeling software InsightII and the minimization program, CNS. Putative MHC-I binding peptides from these sequences were generated using the p-MHC-I binding prediction algorithm, BIMAS. By replacing these peptides in the respective crystal structure of MHC I and superimposing the two structures, we have tried to establish that through structural similarity in binding to MHC-I, peptidomimics have a role in the maintenance of antigen-specific CTL memory. Consequently CTL memory specific to antigenic epitope can be preserved even in the absence of antigen by its peptidomimic.
Following long-term immunizations, as expected of a secondary immune response, the serum Ab1 titre was found to be higher than the titer during primary response. It was also noted that though the number of Ab1 and Ab2 cell number was comparable in the total splenocyte population, Ab1 titre in the serum was higher than Ab2, immaterial of Ag/Ab2 booster. The same trend was noticed in prolifertion assay and CTL assays when the splenocytes were stimulated by Ag/Ab2 pulsed bone-marrow derived dendritic cells (BMDCs) as APCs. That is, irrespective of immunization and boost with Ag/Ab2, Ag pulsed BMDCs stimulated the proliferation and CTL lysis of long term immunized splenocytes to a greater extent than Ab2 pulsed BMDCs.
Memory markers present on B and T cell surface might help maintain their close interactions in the idiotypic network. CD27/CD70 (CD27L) might play a role in maintaining these cells in a memory state. The Id α-Id B cells in addition to being triggered through the membrane bound Id, α-Id antibodies, can also be activated through CD27/CD70 to differentiate into plasma cells upon activation by antigen. Id and α-Id B cells were demonstrated to possess the CD27 memory marker on their surface in addition to the membrane bound IgM. Antigen specific IgM and CD27 double positive cells were detected in the range of 1-3% in the total splenocyte population.
In conclusion: PPRV HN immunization triggered the generation of Ab1, Ab2, Ab3 (Id, α-Id, α-α-Id) cascade through the interaction of membrane bound immunoglobulin of the corresponding B cells. Ab2 was demonstrated to be a significant structural and functional mimic of the antigen. Peptidomimics of the antigenic epitope, present in the Ab2 variable region, can serve the purpose of maintaining antigen specific T cell memory response.
These findings re-confirm the importance of anti-id antibodies in the regulation of immune responses. Ever since the concept of antigen mimicry by anti-Id antibody has been confirmed by several laboratories, the utility of anti-Ids as surrogate antigens for the purpose of prophylactic vaccination has received great attention. The results of the current work are especially significant for the purpose of development of vaccines for diseases related to antigens that are very cumbersome to purify (for ex., in case of several cancers) or when it is too dangerous to immunize with the antigen itself (for ex., in case of some pathogenic organisms). The results also signify that immaterial of the nature of the antigen, their respective petidomimics can establish and maintain immunological memory.
|
346 |
Performance Enhancement Using Cross Layer Approaches in Wireless Ad Hoc NetworksKhallid, Murad 01 January 2011 (has links)
Ad hoc network is intrinsically autonomous and self-configuring network that does not require any dedicated centralized management. For specialized applications such as, military operations, search-and-rescue missions, security and surveillance, patient monitoring, hazardous material monitoring, 4G (4th Generation) coverage extension, and
rural communication; ad hoc networks provide an intelligent, robust, flexible and cost effective solution for the wireless communication needs.
As in centralized wireless systems, ad hoc networks are also expected to support high data rates, low delays, and large node density in addition to many other QoS (Quality of Service) requirements. However, due to unique ad hoc network characteristics, spectrum scarcity, computational limit of current state-of-the-art technology, power consumption, and memory; meeting QoS requirements is very challenging in ad hoc networks. Studies have shown cross layer to be very effective in enhancing QoS performance under spectrum scarcity and other constraints.
In this dissertation, our main goal is to enhance performance (e.g., throughput, delay, scalability, fairness) by developing novel cross layer techniques in single-hop single channel general ad hoc networks. Our dissertation mainly consists of three main sections.
In the first section, we identify major challenges intrinsic to ad hoc networks that affect QoS performance under spectrum constraint (i.e., single channel). In the later parts of the dissertation, we investigate and propose novel distributed techniques for ad hoc networks to tackle identified challenges. Different from our main goal, albeit closely related; in the first section we propose a conceptual cross layer frame work for interaction control and coordination. In this context, we identify various functional blocks, and show through simulations that global and local perturbations through parametric correlation can be used for performance optimization.
In the second section, we propose MAC (Medium Access Control) scheduling approaches for omni-directional antenna environment to enhance throughput, delay, scalability and fairness performance under channel fading conditions. First, we propose a novel cooperative ratio-based MAC scheduling scheme for finite horizon applications. In
this scheduling scheme, each node cooperatively adapts access probability in every window based on its own and neighbors` backlogs and channel states to enhance throughput, scalability and fairness performance. Further, in the second section, we propose two novel relay based MAC scheduling protocols (termed as 2rcMAC and IrcMAC) that make use of relays for reliable transmission with enhanced throughput and delay performance. The proposed protocols make use of spatial diversity due to relay path(s) provided they offer higher data rates compared to the direct path. Simulation results confirm improved performance compared to existing relay based protocols.
In the third section, we make use of directional antenna technology to enhance spatial reuse and thus increase network throughput and scalability in ad hoc networks. In this section, we introduce problems that arise as a result of directional communication. We consider two such problems and propose techniques that consequently lead to throughput,
delay and scalability enhancement. Specifically, we consider destination location and tracking problem as our first problem. We propose a novel neighbor discovery DMAC (Directional MAC) protocol that probabilistically searches for the destination based on elapsed time, distance, average velocity and beam-width. Results confirm improved performance compared to commonly used random sector and last sector based directional MAC protocols. Further, we identify RTS/CTS collisions as our second problem which leads to appreciable throughput degradation in ad hoc networks. In this respect, we investigate and propose a fully distributed asynchronous polarization based DMAC protocol. In this protocol, each node senses its neighborhood on both linear polarization
channels and adapts polarization to enhance throughput and scalability. Throughput and delay comparisons against the basic DMAC protocol clearly show throughput, scalability and delay improvements.
|
347 |
Linear minimum mean-square-error transceiver design for amplify-and-forward multiple antenna relaying systemsXing, Chengwen., 邢成文. January 2010 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
|
348 |
Achievable rates for Gaussian Channels with multiple relaysCoso Sánchez, Aitor del 12 September 2008 (has links)
Los canales múltiple-entrada-múltiple-salida (MIMO) han sido ampliamente propuestos para superar los desvanecimientos aleatorios de canal en comunicaciones inalámbricas no selectivas en frecuencia. Basados en equipar tanto transmisores como receptores con múltiple antenas, sus ventajas son dobles. Por un lado, permiten al transmisor: i) concentrar la energía transmitida en una dirección-propia determinada, o ii) codificar entre antenas con el fin de superar desvanecimientos no conocidos de canal. Por otro lado, facilitan al receptor el muestreo de la señal en el dominio espacial. Esta operación, seguida por la combinación coherente de muestras, aumenta la relación señal a ruido de entrada al receptor. De esta forma, el procesado multi-antena es capaz de incrementar la capacidad (y la fiabilidad) de la transmisión en escenarios con alta dispersión.Desafortunadamente, no siempre es posible emplazar múltiples antenas en los dispositivos inalámbricos, debido a limitaciones de espacio y/o coste. Para estos casos, la manera más apropiada de explotar el procesado multi-antena es mediante retransmisión, consistente en disponer un conjunto de repetidores inalámbricos que asistan la comunicación entre un grupo de transmisores y un grupo de receptores, todos con una única antena. Con la ayuda de los repetidores, por tanto, los canales MIMO se pueden imitar de manera distribuida. Sin embargo, la capacidad exacta de las comunicaciones con repetidores (así como la manera en que este esquema funciona con respeto al MIMO equivalente) es todavía un problema no resuelto. A dicho problema dedicamos esta tesis.En particular, la presente disertación tiene como objetivo estudiar la capacidad de canales Gaussianos asistidos por múltiples repetidores paralelos. Dos repetidores se dicen paralelos si no existe conexión directa entre ellos, si bien ambos tienen conexión directa con la fuente y el destino de la comunicación. Nos centramos en el análisis de tres canales ampliamente conocidos: el canal punto-a-punto, el canal de múltiple-acceso y el canal de broadcast, y estudiamos su mejora de funcionamiento con repetidores. A lo largo de la tesis, se tomarán las siguientes hipótesis: i) operación full-duplex en los repetidores, ii) conocimiento de canal tanto en transmisión como en recepción, y iii) desvanecimiento sin memoria, e invariante en el tiempo.En primer lugar, analizamos el canal con múltiples repetidores paralelos, en el cual una única fuente se comunica con un único destino en presencia de N repetidores paralelos. Derivamos límites inferiores de la capacidad del canal por medio de las tasas de transmisión conseguibles con distintos protocolos: decodificar-y-enviar, decodificar-parcialmente-y-enviar, comprimir-y-enviar, y repetición lineal. Asimismo, con un fin comparativo, proveemos un límite superior, obtenido a través del Teorema de max-flow-min-cut. Finalmente, para el número de repetidores tendiendo a infinito, presentamos las leyes de crecimiento de todas las tasas de transmisión, así como la del límite superior.A continuación, la tesis se centra en el canal de múltiple-acceso (MAC) con múltiples repetidores paralelos. El canal consiste en múltiples usuarios comunicándose simultáneamente con un único destino en presencia de N repetidores paralelos. Derivamos una cota superior de la región de capacidad de dicho canal utilizando, de nuevo, el Teorema de max-flow-min-cut, y encontramos regiones de tasas de transmisión conseguibles mediante: decodificar-y-enviar, comprimir-y-enviar, y repetición lineal. Asimismo, se analiza el valor asintótico de dichas tasas de transmisión conseguibles, asumiendo el número de usuarios creciendo sin límite. Dicho estudio nos permite intuir el impacto de la diversidad multiusuario en redes de acceso con repetidores.Finalmente, la disertación considera el canal de broadcast (BC) con múltiples repetidores paralelos. En él, una única fuente se comunica con múltiples destinos en presencia de N repetidores paralelos. Para dicho canal, derivamos tasas de transmisión conseguibles dado: i) codificación de canal tipo dirty paper en la fuente, ii) decodificar-y-enviar, comprimir-y-enviar, y repetición lineal, respectivamente, en los repetidores. Además, para repetición lineal, demostramos que la dualidad MAC-BC se cumple. Es decir, la región de tasas de transmisión conseguibles en el BC es igual a aquélla del MAC con una limitación de potencia suma. Utilizando este resultado, se derivan algoritmos de asignación óptima de recursos basados en teoría de optimización convexa. / Multiple-input-multiple-output (MIMO) channels are extensively proposed as a means to overcome the random channel impairments of frequency-flat wireless communications. Based upon placing multiple antennas at both the transmitter and receiver sides of the communication, their virtues are twofold. On the one hand, they allow the transmitter: i) to concentrate the transmitted power onto a desired eigen-direction, or ii) tocode across antennas to overcome unknown channel fading. On the other hand, they permit the receiver to sample the signal on the space domain. This operation, followed by the coherent combination of samples, increases the signal-to-noise ratio at the input of the detector. In fine, MIMO processing is able to provide large capacity (and reliability) gains within rich-scattered scenarios.Nevertheless, equipping wireless handsets with multiple antennas is not always possible or worthwhile. Mainly, due to size and cost constraints, respectively. For these cases, the most appropriate manner to exploit multi-antenna processing is by means of relaying. This consists of a set of wireless relay nodes assisting the communication between a set of single-antenna sources and a set of single-antenna destinations. With the aid of relays, indeed, MIMO channels can be mimicked in a distributed way. However, the exact channel capacity of single-antenna communications with relays (and how this scheme performs with respect to the equivalent MIMO channel) is a long-standing open problem. To it we have devoted this thesis.In particular, the present dissertation aims at studying the capacity of Gaussian channels when assisted by multiple, parallel, relays. Two relays are said to be parallel if there is no direct link between them, while both have direct link from the source and towards the destination. We focus on three well-known channels: the point-to-point channel, the multi-access channel and the broadcast channel, and study their performance improvement with relays. All over the dissertation, the following assumptions are taken: i) full-duplex operation at the relays, ii) transmit and receive channel state information available at all network nodes, and iii) time-invariant, memory-less fading.Firstly, we analyze the multiple-parallel relay channel, where a single source communicates to a single destination in the presence of N parallel relays. The capacity of the channel is lower bounded by means of the achievable rates with different relaying protocols, i.e. decode-and-forward, partial decode-and-forward, compress-and-forward and linear relaying. Likewise, a capacity upper bound is provided for comparison, derived using the max-flow-min-cut Theorem. Finally, for number of relays growing to infinity, the scaling laws of all achievable rates are presented, as well as the one of the upper bound.Next, the dissertation focusses on the multi-access channel (MAC) with multiple-parallel relays. The channel consists of multiple users simultaneously communicating to a single destination in the presence of N parallel relay nodes. We bound the capacity region of the channel using, again, the max-flow-min-cut Theorem and find achievable rate regions by means of decode-and-forward, linear relaying and compress-and-forward. In addition, we analyze the asymptotic performance of the obtained achievable sum-rates, given the number of users growing without bound. Such a study allows us to grasp the impact of multi-user diversity on access networks with relays.Finally, the dissertation considers the broadcast channel (BC) with multiple parallel relays. This consists of a single source communicating to multiple receivers in the presence of N parallel relays. For the channel, we derive achievable rate regions considering: i) dirty paper encoding at the source, and ii) decode-and-forward, linear relaying and compress-and-forward, respectively, at the relays. Moreover, for linear relaying, we prove that MAC-BC duality holds. That is, the achievable rate region of the BC is equal to that of the MAC with a sum-power constraint. Using this result, the computation of the channel's weighted sum-rate with linear relaying is notably simplified. Likewise, convex resource allocation algorithms can be derived.
|
349 |
Achieving Quality of Service Guarantees for Delay Sensitive Applications in Wireless NetworksAbedini, Navid 2012 August 1900 (has links)
In the past few years, we have witnessed the continuous growth in popularity of delay-sensitive applications. Applications like live video streaming, multimedia conferencing, VoIP and online gaming account for a major part of Internet traffic these days. It is also predicted that this trend will continue in the coming years. This emphasizes the significance of developing efficient scheduling algorithms in communication networks with guaranteed low delay performance. In our work, we try to address the delay issue in some major instances of wireless communication networks.
First, we study a wireless content distribution network (CDN), in which the requests for the content may have service deadlines. Our wireless CDN consists of a media vault that hosts all the content in the system and a number of local servers (base stations), each having a cache for temporarily storing a subset of the content. There are two major questions associated with this framework: (i) content caching: which content should be loaded in each cache? and (ii) wireless network scheduling: how to appropriately schedule the transmissions from wireless servers? Using ideas from queuing theory, we develop provably optimal algorithms to jointly solve the caching and scheduling problems.
Next, we focus on wireless relay networks. It is well accepted that network coding can enhance the performance of these networks by exploiting the broadcast nature of the wireless medium. This improvement is usually evaluated in terms of the number of required transmissions for delivering flow packets to their destinations. In this work, we study the effect of delay on the performance of network coding by characterizing a trade-off between latency and the performance gain achieved by employing network coding. More specifically, we associate a holding cost for delaying packets before delivery and a transmission cost for each broadcast transmission made by the relay node. Using a Markov decision process (MDP) argument, we prove a simple threshold-based policy is optimal in the sense of minimum long-run average cost.
Finally, we analyze delay-sensitive applications in wireless peer-to-peer (P2P) networks. We consider a hybrid network which consists of (i) an expensive base station-to-peer (B2P) network with unicast transmissions, and (ii) a free broadcast P2P network. In such a framework, we study two popular applications: (a) a content distribution application with service deadlines, and (b) a multimedia live streaming application. In both problems, we utilize random linear network coding over finite fields to simplify the coordination of the transmissions. For these applications, we provide efficient algorithms to schedule the transmissions such that some quality of service (QoS) requirements are satisfied with the minimum cost of B2P usage. The algorithms are proven to be throughput optimal for sufficiently large field sizes and perform reasonably well for finite fields.
|
350 |
Mechanised Intercropping and Double Cropping in Southern QueenslandPeter Michael Masasso Unknown Date (has links)
The potential for relay intercropping and double cropping was assessed in field trials over three consecutive years at Gatton, Queensland. The rationale was to use controlled traffic technology to facilitate relay and double cropping and thus research a cropping system that could exploit late winter crop rainfall. In Field Trial I, grain sorghum and sunflower, broadacre crops already grown within the Southern and Darling Downs regions of Queensland and New South Wales were intercropped into wheat; sunflower was intercropped with wheat in Field Trial II. Sole summer plantings were made at the same time as intercrops were planted. The wheat crop was cut and stubble removed to facilitate this. Various planting dates (three for Field Trial I; four for Field Trial II) for the relayed summer crops were used to determine if an optimum planting time existed. Plant height, tiller number, light interception, grain yield, soil moisture and economic return were used as parameters to compare the intercrop with sole plantings in Field Trial I. Grain yield, soil moisture, rainfall infiltration and economic return were measured in Field Trial II. Research also involved the modification and testing of a tractor to carry out the sowing of the intercrop. In Field Trial I, light interception was shown to vary at different stages of the wheat crop and the use of these stages to determine optimum planting dates of the relay crop is suggested. In both trials, no differences were recorded in the grain yield between intercropped and sole cropped wheat treatments suggesting the trafficking of the plot did not affect the wheat. As neither sorghum or sunflower established as intercrops, competition was not a factor in affecting wheat yields. Moisture readings in both trials showed little change below a depth of 100 cm; however some treatment differences were present at shallower depths. In Field ii Trial I, sole summer sorghum, especially the first planting date, showed reduced water capture/ higher soil evaporation due to wheat removal initially and later transpiration loss due to crop growth and increased weed pressure. Sole wheat treatments showed increased moisture storage after harvest due to lack of water use by the crop and increased infiltration/reduced runoff due to stubble retention. Improved soil moisture recharge after rainfall events was apparent in double cropped treatments suggesting not only improved water utilisation but also improved capture and storage is possible within this system. Sorghum, commonly used throughout south eastern Queensland as a summer crop option, proved unsuitable for relay intercropping in Field Trial I for Planting Dates 1 and 2. Minimum soil temperatures for these plantings were marginal as they were close to the 15o Celsius level recommended for sorghum. However, even though establishment was poor for the intercropped plantings, it was higher for sole sorghum plantings. Wheat allelopathic effects may be involved. To avoid the temperature limitations of sorghum, sunflower was selected as an alternative intercrop in the later planting dates of Field Trial I and all dates for Field Trial II. Reasons for the poor establishment and yield of sunflowers in the earlier intercrop planting dates compared to sole plantings remain unknown but also may be related to allelopathic effects from intercropped wheat. Low soil temperature was not a factor affecting establishment Yields for planting dates were recorded in the intercropped sunflower treatments for Field Trial II and the optimal planting time for sunflowers in a wheat/sunflower relay intercrop was identified as when physiological maturity of the wheat had occurred. This may relate to the wheat crop stage. In Field Trial II, no significant differences in soil moisture were recorded between treatments from overall water use for the trial period. There were differences in water use between intercropped and sole cropped treatments for iii some rainfall events. Three rainfall events were chosen for closer study in each of the field trials conducted. Each event varied in the length and time as well as the duration and intensity of the rain that fell for the period. For the first rainfall period the moisture content of the first planting date of the sole summer treatment and to a lesser extent the second planting date of the same treatment increased, most likely due to wheat removal. In the third rainfall period the double cropped sunflower treatment with stubble tended to store less moisture and this may be due to the active crop growth at this time. It was evident in both field trials of the need for an effective weed control program in the intercrop plots. Weeds were controlled in wheel tracks by glyphosate sprays. Cultural methods may help but a herbicide suitable for both components of the intercrop would be very useful. A tractor was successfully modified to a 3 metre wheelspace and a clearance of 70 cm. This proved sufficient for planting the relay intercrop in Field Trial II without negatively affecting the yield of the standing crop. The row spacing of 18 cm for wheat in a 3 metre fixed bed and wheeltrack configuration assisted with guidance and interplanting of the relay crop. The relay crop was sown as single alternating rows.
|
Page generated in 0.0468 seconds