• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dissolution Study of Investigational Tablet of 5mg Oxycodone HCl/25mg Dextromethorphan HBr to Determine a Release Profile

Martinez, David January 2005 (has links)
Class of 2005 Abstract / Objectives: To standardize six tablets that share a statistically insignificant in vitro dissolution profile consisting of an experimental mixture of oxycodone HCl paired with dextromethorphan. We wanted to see if the release dynamics were not statistically different in an aqueous environment utilizing testing via USP Apparatus II (rotating paddles) in order to establish a drug release profile. Methods: Six experimental formulation tablets of oxycodone/DM were placed in separate dissolution vessels. The medium contained 900ml of water (standard media per USP) at 37°C (standard temperature per USP). Samples were taken at the 1, 2, 4, 6, 8, and 24 hour time periods and quantified using HPLC. The aim of this experiment was not meant to simulate an in vivo environment but simply to gain preliminary data for future research. Results: A one-sample t-test was used to calculate significant differences between the release profiles of oxycodone and dextromethorphan. We found that the release of all 6 tablets were not significantly statistically different for active ingredients, oxycodone and dextromethorphan. This data validated our hypothesis that the six experimental tablets would release the active ingredients over a 24-hour period at very similar and statistically insignificant rates. Implications: We now have a tablet formulation that can be replicated and used for further research including animal studies, and possibly human clinical trials, in order to develop a new pharmacotherapeutic approach for pain management.
2

Comparison of the physicochemical characteristics and flavonoid release profiles of Sutherlandia frutescens phytosomes versus liposomes

Daghman, Mohamed Ibrahim January 2016 (has links)
Magister Pharmaceuticae - MPharm / Sutherlandia frutescens is a traditional plant medicine widely used in South Africa. Traditionally, the leaves of S. frutescens are mainly used as a tea, but these traditional dosage forms have several disadvantages, including that they are not particularly convenient to prepare and store, encourage dosage inaccuracy and are highly susceptible to microbial contamination. To solve these problems, dried aqueous extract forms, e.g. freeze dried aqueous extract (FDAE) of S. frutescens were prepared, but they, in turn, may still suffer from instability and contain mainly hydrophilic phytoconstituents that are poorly absorbed and delivered for in vivo activity. Modified forms of the FDAE, i.e. the active phytopharmaceutical ingredient (API), may be a better solution. Therefore this study sought to prepare liposomes and phytosomes of the freeze dried aqueous extract of Sutherlandia frutescens, as a means of increasing the total the surface area of the API, thus improving its release and dissolution in gastrointestinal fluids. Liposomes and phytosomes of the FDAE of Sutherlandia frutescens obtained were prepared using a thin film hydration method at ratios of lecithin: S. frutescens (3:1) and phosphatidylcholine: S. frutescens (2:1) respectively. The physical characteristics (i.e. particle size, size distribution, zeta potential, and morphology), of flavonoid glycosides (i.e. sutherlandins A to D; API) as well as content and release profiles of each dosage form (i.e. FDAE liposome or phytosomes) at pH 1.2 and pH 6.8 was determined. A validated HPLC assay was used to determine and compare the flavonoid glycoside content and release profiles of the liposomes and phytosomes. Both liposomes and phytosomes were successfully prepared, in moderate yields (± 30 %, and ± 50 %, respectively), using the thin film hydration method. The liposomes had a significantly smaller size, lower size distribution, higher zeta potential and better stability than the phytosomes (p < 0.05). The phytosomes, however, had significantly higher flavonoid glycoside encapsulation efficiency than the liposomes (±50 % vs ±26 %; p < 0.01). In addition, the release at 120 minutes, of flavonoid glycosides from the liposomes (63%, 58%, 76% and 46% % at pH 1.2, and 78%, 76%, 87% and 89 % at pH 6.8 for sutherlandins A, B, C and D, respectively) was significantly higher and faster than that of the phytosomes (52%, 41%, 51% and 39 % at pH 1.2, and 31% 31%, 33%and 45% % at pH 6.8, for sutherlandins A, B, C and D, respectively). The differences in release were likely due to differences in particle size and size distribution of the two modified API forms. Overall, liposomes and phytosomes can be considered promising vehicles for delayed delivery of herbal crude extracts. Based on its characteristics (i.e. narrower size distribution, and better stability), the liposomes were preferred compared to the phytosomes offering a better kinetic release profile. The phytosomes had higher encapsulation than the liposomes that may be due to complex formation between the API and the lipid.
3

Influência do tamanho de partículas sólidas de isoniazida, rifampicina e hidroxipropilmetilcelulose na liberação dos fármacos, a partir de sistemas matriciais / Influence of size of solid particles of isoniazid, rifampicin and hydroxypropylmethylcellulose the release of drug from matrix systems

Lima, Claudio Moreira de 01 February 2001 (has links)
Os materiais em estado sólido têm papel importante no desenvolvimento da tecnologia e na produção da forma farmacêutica, pois atuam como um dos principais constituintes das formulações. As dimensões das partículas sólidas normalmente influenciam a dissolução dos fármacos, visto que esta depende da área superficial exposta ao meio líquido. O presente trabalho estuda a influência do tamanho das partículas sólidas na liberação de fármacos contidos no sistema matricial. foram analisados comprimidos matriciais formados por hidroxipropilmetilcelulose (HPMC) (A) e fármacos (isoniazida (INH), fármaco hidrossolúvel (B) ou rifampicina (RMP) fármaco com baixa solubilidade(C)). Os pós para elaboração das formulações foram separados por tamisação, segundo classificação da USP XXIII, em quatro tamanho de partículas, partículas não homogêneas (branco), t&#8805;0,425 , 0,177&#8804;*t&#60;0,250 e t&#60;0,150 (t= tamanho em mm) e identificadas como A0, A1, A2, A3, B0, B1, B2, B3 e C0, C1, C2, C3, respectivamente. Por compressão direta foram preparados comprimidos matriciais de 250 mg, contendo, no primeiro tipo de formulação, 150 mg de isoniazida; 2,5 mg de estearato de magnésio e. 97,5 mg de HPMC e na segunda formulação mudou-se a constituição da fórmula, utilizando como fármaco 150 mg de rifampicina e os demais constituintes permaneceram os mesmos. As formulações foram obtidas pela combinação dos pós, mantendo-se constante a força de compressão, umidade do ambiente e demais variáveis, em A0B0, A1B1, A2B2, A3B3, A0C0, A0C1, A0C2, A0C3, A1C0, A1C1, A1C2, A1C3, A2C0, A2C1, A2C2, A2C3, A3C0, A3C1, A3C2 e A3C3. Os resultados das análises física e físico-química apresentaram claramente a influência do tamanho da partícula sólida sobre os parâmetros dos comprimidos matriciais estudados. Através da análise estatística dos parâmetros farmacocinéticos, Qmax e AUC, pode-se concluir que as formulações A1B1, A2B2, A3B3, A0C3, A1C1, A1C2, A1C3 e A2C1 apresentaram diferenças significativas entre as médias, quando comparada ao padrão. / The present work studies the solid particle size\'s influence of the rifampin and hydroxypropylmetylcellulose in kinetic release profile of the drug in matrix systems. The matrix tablets were formed by HPMC (A), isoniazid (B) and rifampin (C). The powders were classified by sieving in four different particle size distribution. (See table in file PDF) The twenty formulations were prepared by direct compression of the rifampin or isoniazid (150 mg), magnesium stearat (2,5 mg) and HPMC in order to obtain tablets of 250 mg. The formulations were obtained by the combination of the powders, in A0B0, A1,B1, A2B2, A3B3, A0C0, A0C1, A0C2, A0C3, A1C0, A1C1, A1C2, A1C3, A2C0, A2C1, A2C2, A2C3, A3C3, A3C1, A3C2 e A3C3. The drug release was studied by the dissolution and quantification assay. The dissolution curve represents the accumulated drug release during a period of 10 hours. The matrices dissolution profiles are upset by divergence the drugs and HPMC particle size in formulation. The estatistic analyse (teste t) the pharmacokinetic parameter (Qmax and AUC) show that the formulations A1B1, A2B2, A3B3, A1C1, A1C2, A1C3 and A2C1 are significantly differents when compare whith the standard tablets.
4

Influência do tamanho de partículas sólidas de isoniazida, rifampicina e hidroxipropilmetilcelulose na liberação dos fármacos, a partir de sistemas matriciais / Influence of size of solid particles of isoniazid, rifampicin and hydroxypropylmethylcellulose the release of drug from matrix systems

Claudio Moreira de Lima 01 February 2001 (has links)
Os materiais em estado sólido têm papel importante no desenvolvimento da tecnologia e na produção da forma farmacêutica, pois atuam como um dos principais constituintes das formulações. As dimensões das partículas sólidas normalmente influenciam a dissolução dos fármacos, visto que esta depende da área superficial exposta ao meio líquido. O presente trabalho estuda a influência do tamanho das partículas sólidas na liberação de fármacos contidos no sistema matricial. foram analisados comprimidos matriciais formados por hidroxipropilmetilcelulose (HPMC) (A) e fármacos (isoniazida (INH), fármaco hidrossolúvel (B) ou rifampicina (RMP) fármaco com baixa solubilidade(C)). Os pós para elaboração das formulações foram separados por tamisação, segundo classificação da USP XXIII, em quatro tamanho de partículas, partículas não homogêneas (branco), t&#8805;0,425 , 0,177&#8804;*t&#60;0,250 e t&#60;0,150 (t= tamanho em mm) e identificadas como A0, A1, A2, A3, B0, B1, B2, B3 e C0, C1, C2, C3, respectivamente. Por compressão direta foram preparados comprimidos matriciais de 250 mg, contendo, no primeiro tipo de formulação, 150 mg de isoniazida; 2,5 mg de estearato de magnésio e. 97,5 mg de HPMC e na segunda formulação mudou-se a constituição da fórmula, utilizando como fármaco 150 mg de rifampicina e os demais constituintes permaneceram os mesmos. As formulações foram obtidas pela combinação dos pós, mantendo-se constante a força de compressão, umidade do ambiente e demais variáveis, em A0B0, A1B1, A2B2, A3B3, A0C0, A0C1, A0C2, A0C3, A1C0, A1C1, A1C2, A1C3, A2C0, A2C1, A2C2, A2C3, A3C0, A3C1, A3C2 e A3C3. Os resultados das análises física e físico-química apresentaram claramente a influência do tamanho da partícula sólida sobre os parâmetros dos comprimidos matriciais estudados. Através da análise estatística dos parâmetros farmacocinéticos, Qmax e AUC, pode-se concluir que as formulações A1B1, A2B2, A3B3, A0C3, A1C1, A1C2, A1C3 e A2C1 apresentaram diferenças significativas entre as médias, quando comparada ao padrão. / The present work studies the solid particle size\'s influence of the rifampin and hydroxypropylmetylcellulose in kinetic release profile of the drug in matrix systems. The matrix tablets were formed by HPMC (A), isoniazid (B) and rifampin (C). The powders were classified by sieving in four different particle size distribution. (See table in file PDF) The twenty formulations were prepared by direct compression of the rifampin or isoniazid (150 mg), magnesium stearat (2,5 mg) and HPMC in order to obtain tablets of 250 mg. The formulations were obtained by the combination of the powders, in A0B0, A1,B1, A2B2, A3B3, A0C0, A0C1, A0C2, A0C3, A1C0, A1C1, A1C2, A1C3, A2C0, A2C1, A2C2, A2C3, A3C3, A3C1, A3C2 e A3C3. The drug release was studied by the dissolution and quantification assay. The dissolution curve represents the accumulated drug release during a period of 10 hours. The matrices dissolution profiles are upset by divergence the drugs and HPMC particle size in formulation. The estatistic analyse (teste t) the pharmacokinetic parameter (Qmax and AUC) show that the formulations A1B1, A2B2, A3B3, A1C1, A1C2, A1C3 and A2C1 are significantly differents when compare whith the standard tablets.
5

Constrained crystallization and depletion in the polymer medium for transdermal drug delivery system

Zeng, Jianming 13 July 2004 (has links)
Transdermal drug delivery systems (TDS) are pharmaceutical devices that are designed to deliver specific drugs to the human body by diffusion through skin. The TDS effectiveness suffers from crystallization in the patch when they are kept in storage for more than two years. It has been reported that there are two types of crystals in the patch: needle and aggregate, and growth of drug crystals in TDS generally occurs only in the middle third of the polymer layer. In our study, fluorescence microscopy, EDS (SEM) and Raman microspectroscopy were used to further characterize the crystals. The results show that the needle crystals most probably contain estradiol and acrylic resin conjugate. The FTIR spectrum of the model sample proved the occurrence of a reaction between estradiol and acrylic resin. Crystal growth in an unstressed matrix of a dissolved crystallizable drug component was simulated using a kinetic Monte Carlo model. Simulation using Potts model with proper boundary condition gives the crystals in the middle of matrix in the higher temperature. Bond fluctuation model is also being implemented to study representative dense TDS polymer matrix. This model can account for the size effect of polymer chain on the crystal growth. The drug release profile from TDS was also studied by simulating the diffusion of drug molecules using Monte Carlo techniques for different initial TDS microstructure. The release rate and profile of TDS depend on the dissolution process of the crystal. At low storage temperature, the grains are evenly distributed throughout the thickness of the TDS patch, thus the release rate and profile is similar to the randomly initiated system. Further work on stress induced crystallization is currently under development. Although the study was specifically done for drug in a polymer medium, the techniques developed in this investigation is in general applicable to any constrained crystallization in a polymer medium.
6

The Effect of Microcrystalline Cellulose as cushioning excipient during controlled release

Jansson, Felisa January 2017 (has links)
In the pharmaceutical industry, it is always important to have reproducible processes and raw materials of high quality to ensure good quality products. AstraZeneca, that is a leading manufacturer of different pharmaceuticals, works according to GMP to make sure that their processes deliver products of the same quality every time. A problem that has occurred at AstraZeneca is when a raw material is not properly understood and variations in the raw material affects the final product. Variations in drug release in one of AstraZeneca´s products, Product X, has been linked to the cushioning excipient Microcrystalline cellulose (MCC). Variations in drug release has been noticed during change from one batch of MCC to another. The aim of this study was to investigate which material attributes of MCC that contributes to variations in the final product. Particle size and moisture content were identified as critical material attributes (CMA´s) and were therefore chosen to be investigated more thoroughly. By variating particle size and moisture content during manufacturing of Product X, the influence of these attributes could be investigated using Design of Experiment (DoE). An additional experiment that compared two MCC batches from different suppliers was also performed during this study. The results from these experiments showed that the particle size and moisture content of MCC does affect the drug release. Large particles and high moisture content gave rise to a faster drug release compared to small particles and low moisture content that gave rise to a slower drug release. It is however hard to draw conclusions regarding how small differences in particle size and moisture content could affect the drug release.
7

Řízené uvolňování léčiv z biodegradabilních hydrogelů. / Controlled Drug Release from Biodegradable Hydrogels.

Oborná, Jana January 2018 (has links)
This dissertation is focused on the controlled release of drugs from a biodegradable amphiphilic hydrogel based on hydrophobic poly(lactic acid), poly(glycolic acid) and hydrophilic poly(ethylene glycol) (PLGA-PEG-PLGA, ABA) and its modification with itaconic anhydride (ITA). The resulting ,-itaconyl(PLGA-PEG-PLGA) copolymer is referred to as ITA/PLGA-PEG-PLGA/ITA or ITA/ABA/ITA. Itaconic acid provides reactive double bonds and a functional carboxyl group at the ends of the PLGA-PEG-PLGA copolymer chain, thereby rendering the modified ITA/ABA/ITA copolymer less hydrophobic and offering the possibility of forming a carrier for hydrophilic drug substances. These functional copolymers are thermosensitive and change in the external environment (e.g. temperature) causes a sol-gel phase transition due to the formation of micellar structure. The bioactive substances can thus be mixed with a copolymer which is in a low viscous phase (sol phase) and subsequently the mixture can be injected into patient's body at the target site where it forms a gel at 37 °C. This hydrogel becomes a drug depot, which gradually releases the active substance. Prediction of the substance’s release profile from the hydrogel is an effective tool to determine the frequency of administration, potentially enhancing efficacy, and assessment of side effects associated with dosing. The analgesic paracetamol and the sulfonamide antibiotic sulfathiazole were used as model drugs, representing hydrophilic and hydrophobic substances, respectively. The active substances had a significant effect on the resulting hydrogel stiffness. Type of solvent, incubation medium and nanohydroxyapatite also influenced on the gel stiffness and subsequent stability of the hydrogel-drug system. Controlled release of drugs took place in simulated conditions of the human body. Verification of Korsmeyer-Peppas (KP) drug-release model is also discussed in this thesis. The KP model was found suitable for simulating the release of sulfathiazole from ABA and ITA/ABA/ITA hydrogels. On the contrary, the performance of KP model was not suitable for describing the release of paracetamol from the ABA hydrogels. Therefore, a new regression model suitable for both buffered simulated media and water has been proposed. The proposed model fitted better the release of both sulfathiazole and paracetamol from composite material prepared from ABA hydrogel and nanohydroxyapatite.
8

DESENVOLVIMENTO, CARACTERIZAÇÃO E AVALIAÇÃO IN VIVO DE SISTEMAS DE LIBERAÇÃO MICROPARTICULADOS CONTENDO EFAVIRENZ

Lyra, Amanda Martinez 17 February 2016 (has links)
Made available in DSpace on 2017-07-21T14:13:05Z (GMT). No. of bitstreams: 1 Amanda Lyra.pdf: 6099284 bytes, checksum: 8701070289c9fd679c58cb469286e18a (MD5) Previous issue date: 2016-02-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The efavirenz is the first choice drug of non-nucleoside reverse transcriptase inhibitors used in the treatment of HIV-1 infections. It belongs to class II of the Biopharmaceutics Classification System and your therapeutic dose is of 600 mg, taken before bedtime due the side effects. With the aim of improve the drug’s bioavailability with possible reduction of side effects, microparticles with Eudragit® L100 or S100 were developed by spray drying. The formulations M1 to M4 were prepared in ethanol:water (50:50, V/V) and M5 to M8 in ethanol:phosphate buffer pH 7.4 (50:50, V/V). Microparticles were obtained with yield (40 - 70%), humidity (1.41 - 5.77%), particle size (2.02 - 4.07 μm) and zeta potential (-61 to -43) suitable. The drug’s quantification was realized by high performance liquid chromatography analytical method developed and validated. The method proved to be specific, linear (r = 0.9997, n = 3), precise, accurate and robust in a range of 8.0 to 50.0 μg.mL-1, with analysis and retention time of 5.0 and 3.5 minutes, respectively. M1 to M4 showed spherical morphology with drug content between 90 - 104%, and M5 to M8 exhibited flattened and distorted morphology with drug content between 67 - 75%. No chemical interactions was observed in the Fourier transformed infrared spectrum for microparticles M1 to M4. However, there enlargement and increased intensity of some bands in the spectra of microparticles M5 to M8, suggesting a modification of chemical bonds. The thermal analysis and X ray diffraction indicated that the incorporation of EFV into the microparticles contributed to the amorphization of the drug. In vitro drug release confirmed the low solubility of the drug in water (22.88%). The microparticles released less than 22% in acid medium promoting higher release at pH 6.8. All formulations evaluated increased the drug solubility and dissolution efficiency, and exhibited biexponential release kinetics according to the applied mathematical models, being interesting strategies to increase the drug’s bioavailability. The M3 accounted for the major release in pH 6.8 (73.69%) and, according to the Korsmeyer-Peppas model showed anomalous transport characteristics (diffusion and erosion of the polymer), while in other microparticles the release process was controlled by diffusion. In in vitro assay the animals subjected to the administration of M3 exhibited less alterations in the biochemical parameters compared to treatment group EFV, suggesting that the microparticles contributed to the reduction of side effects such as increase in cholesterol, LDL, HDL and triglycerides plasmatic levels. It was observed decay in the quantification of pure drug during the period evaluated in the stability study. The microparticles showed no significant changes in the content of EFV during the 180 days. The thermograms showed no difference in the drug melting range and decays of thermogravimetric curves suggesting no formation of new products and consequently loss of stability. The evaluation of Carr index and Hausner factor indicated that M3 showed better flow and compression properties compared to pure EFV, characteristics which can improving the flow and to facilitate industrial routine. / O efavirenz (EFV) é o fármaco de primeira escolha da classe dos inibidores da transcriptase reversa não análogos de nucleosídeo utilizado no tratamento de infecções por HIV-1. Pertence à classe II do sistema de classificação biofarmacêutico e sua dose terapêutica é de 600 mg, tomados antes de dormir devido aos efeitos colaterais. Com objetivo de melhorar a biodisponibilidade do fármaco com possível redução dos efeitos colaterais, foram desenvolvidas micropartículas com Eudragit® L100 ou S100, por spray drying. As formulações M1 a M4 foram preparadas em etanol:água (50:50, V/V), e M5 a M8 em etanol:tampão fosfato pH 7,4 (50:50, V/V). Foram obtidas micropartículas com rendimentos (40 – 70%), umidades (1,41 – 5,77%), tamanhos de partícula (2,02 – 4,07 μm) e potenciais zeta (-61 a -43 mV) adequados. A quantificação do fármaco foi realizada por meio do método analítico por cromatografia líquida de alta eficiência desenvolvido e validado. O método mostrou-se específico, linear (r = 0,9997, n = 3), preciso, exato e robusto, na faixa de 8,0 a 50,0 μg.mL-1, com tempo de corrida e o tempo de retenção de 5,0 e 3,5 minutos, respectivamente. M1 a M4 apresentaram morfologia esférica, com teor de fármaco entre 90 – 104%, e M5 a M8 exibiram morfologia achatada e distorcida, com teor de fármaco entre 67 – 75%. Nenhuma interação química foi observada nos espectros de infravermelho por transformada em Fourier para as micropartículas M1 a M4. No entanto, houve alargamento e aumento da intensidade de algumas bandas nos espectros das micropartículas M5 a M8, sugerindo uma modificação nas ligações químicas. As análises térmicas e de difração de raios X indicaram que a incorporação do EFV às micropartículas contribuiu para a amorfização do fármaco. Ensaios de liberação in vitro confirmaram a baixa solubilidade do fármaco em água (22,88%). As micropartículas liberaram menos de 22% em meio ácido, promovendo maior liberação em pH 6,8. Todas as formulações avaliadas aumentaram a solubilidade e a eficiência de dissolução do fármaco, e exibiram cinética de liberação biexponencial, segundo os modelos matemáticos aplicados, sendo estratégias interessantes para o aumento da biodisponibilidade do fármaco. A M3 foi responsável pela maior liberação em pH 6,8 (73,69%) e, de acordo com o modelo de Korsmeyer-Peppas, apresentou características de transporte anômalo (difusão e erosão do polímero), enquanto que nas demais micropartículas o processo de liberação foi controlado por difusão. No ensaio in vivo, os animais submetidos à administração de M3 apresentaram menos alterações nos parâmetros bioquímicos, quando comparados ao grupo de tratamento com EFV, sugerindo que as micropartículas contribuíram para a redução dos efeitos colaterais tais como aumento nos níveis plasmáticos de colesterol, LDL e HDL e triglicerídeos. Foi observado um decaimento na quantificação do fármaco puro durante o período avaliado no estudo de estabilidade. As micropartículas não mostraram mudanças significativas no teor de EFV durante 180 dias. Os termogramas indicaram que não houve diferença na faixa de fusão do fármaco e nos decaimentos das curvas termogravimétricas, sugerindo que não houve formação de novos produtos e, consequentemente, perda da estabilidade. A avaliação do índice de Carr e do fator de Hausner indicou que a M3 apresentou melhores propriedades de fluxo e de compactação quando comparadas ao EFV puro, características que podem melhorar o escoamento e facilitar a rotina industrial.

Page generated in 0.0614 seconds