Spelling suggestions: "subject:"elease rate"" "subject:"nrelease rate""
11 |
Modeling full-scale fire test behaviour of polyurethane foams using cone calorimeter dataEzinwa, John Uzodinma 04 June 2009
Flexible polyurethane foam (PUF) is a very versatile material ever created. The material is used for various applications and consumer end-use products such as upholstered furniture and mattresses. The increased use of these polymeric materials causes fire safety concerns. This has led to the development of various regulations and flammability test standards aimed at addressing the hazards associated with polyurethane foam fires. Several fire protection engineering correlations and thermal models have also been developed for the simulation of fire growth behaviour of polyurethane foams. Thus, the overall objective of this research project is to investigate the laboratory test behaviour of this material and then use finer modeling techniques to predict the heat release rate of the specimens, based on information obtained from cone calorimeter tests.<p>
Full-scale fire tests of 10 cm thick polyurethane foams of different sizes were conducted using center and edge-ignition locations. Flame spread and heat release rates were compared. For specimens of the same size, center-ignition tests produced flame areas and peak heat release rates which were respectively 10 and 20% larger compared to edge-ignition tests. Average flame spread rates for horizontal and vertical spread were determined, and results showed excellent agreement with literature. Cone calorimeter tests of the specimens were performed using steel edge frame and open durarock board. Results indicate that different test arrangements and heat sources have significant effects on the fire behaviour of the specimens.<p>
Predictions using the integral convolution model and other fire protection engineering correlations were compared with the full-scale tests results. Results show that the model was more efficient in predicting the heat release rates for edge-ignition tests than the center-ignition tests. The model also was more successful in predicting the heat release rates during the early part of the growth phase than during the later stages of the fire. The predicted and measured peak heat release rates and total heat release were within 10-15% of one another. Flame spread and t-squared fire models also gave satisfactory predictions of the full-scale fire behaviour of the specimens.
|
12 |
Modeling full-scale fire test behaviour of polyurethane foams using cone calorimeter dataEzinwa, John Uzodinma 04 June 2009 (has links)
Flexible polyurethane foam (PUF) is a very versatile material ever created. The material is used for various applications and consumer end-use products such as upholstered furniture and mattresses. The increased use of these polymeric materials causes fire safety concerns. This has led to the development of various regulations and flammability test standards aimed at addressing the hazards associated with polyurethane foam fires. Several fire protection engineering correlations and thermal models have also been developed for the simulation of fire growth behaviour of polyurethane foams. Thus, the overall objective of this research project is to investigate the laboratory test behaviour of this material and then use finer modeling techniques to predict the heat release rate of the specimens, based on information obtained from cone calorimeter tests.<p>
Full-scale fire tests of 10 cm thick polyurethane foams of different sizes were conducted using center and edge-ignition locations. Flame spread and heat release rates were compared. For specimens of the same size, center-ignition tests produced flame areas and peak heat release rates which were respectively 10 and 20% larger compared to edge-ignition tests. Average flame spread rates for horizontal and vertical spread were determined, and results showed excellent agreement with literature. Cone calorimeter tests of the specimens were performed using steel edge frame and open durarock board. Results indicate that different test arrangements and heat sources have significant effects on the fire behaviour of the specimens.<p>
Predictions using the integral convolution model and other fire protection engineering correlations were compared with the full-scale tests results. Results show that the model was more efficient in predicting the heat release rates for edge-ignition tests than the center-ignition tests. The model also was more successful in predicting the heat release rates during the early part of the growth phase than during the later stages of the fire. The predicted and measured peak heat release rates and total heat release were within 10-15% of one another. Flame spread and t-squared fire models also gave satisfactory predictions of the full-scale fire behaviour of the specimens.
|
13 |
Fracture Mechanics of High Performance Nylon FibersAverett, Rodney Dewayne 12 April 2004 (has links)
A fracture mechanics protocol appropriate for small fibers (35 micron diameter) is presented, which allows for the determination of the strength limitations of high performance nylon 6,6 fibers. Specifically, linear elastic fracture mechanics (LEFM) techniques are employed in addition to elastic-plastic fracture mechanics (EPFM) theories to achieve this.
We assume that a minute semi-elliptical flaw of an unknown size exists in the specimen, as a result of the detrimental effects of the manufacturing process (melt spinning). Next, we seek to propagate this flaw in a stable manner through an ancillary process such as high cycle or low cycle fatigue (load-unload). After propagation, uniaxial tensile experiments are performed on the fatigued samples, by which the crack growth eventually becomes catastrophic during the process. After performing scanning electron microscopy (SEM) techniques and reviewing fractography, we are able to determine the critical flaw size and ligament length that leads to unstable crack propagation. These results are substituted into the appropriate LEFM equations and are in close agreement with material properties for nylon 6,6. A discussion is provided that draws parallel to the topics discussed in the literature investigation and the experimental results of this study.
|
14 |
Computer-aided modeling of controlled release through surface erosion with and without microencapsulationWong, Stephanie Tomita 01 June 2007 (has links)
Predictive models for diffusion-controlled particle dissolution are important for designing advanced and efficient solid products for controlled release applications. A computer-aided modeling framework was developed to derive the effective dissolution rates of multiple particles as the solid surface material eroded gradually into the surrounding liquid phase. The mathematical models were solved with numerical methods using the computational software MATLAB. Results from the models were imported into COMSOL Script to create three-dimensional plots of the particle size data as a function of time. The release model found for the monodispersed particles was manipulated to incorporate polydisperse solids, as these are found more frequently in chemical processes. The program was further developed to calculate the particle size as a function of time for particles encapsulated for use in controlled release. The parameters, such as radius size, coating material and encapsulation thickness, can be altered in the computer models to aid in the design of particles for different desired applications. Simulations produced conversion profiles and three-dimensional visualizations for the dissolution processes. Experiments for the dissolution of citric acid in water were performed using a reaction microcalorimeter to verify results found from the computer models.
|
15 |
高強度GFRPのモードⅢ層間はく離疲労き裂進展におよぼす応力比の影響松原, 剛, MATSUBARA, Go, 田中, 啓介, TANAKA, Keisuke 05 1900 (has links)
No description available.
|
16 |
高強度GFRP積層板の層間はく離疲労き裂進展におよぼす混合モード比の影響松原, 剛, MATSUBARA, Go, 西川, 弘泰, NISHIKAWA, Hiroyasu, 仁瓶, 寛太, NIHEI, Kanta, 田中, 啓介, TANAKA, Keisuke 12 1900 (has links)
No description available.
|
17 |
高強度GFRPのモードⅠ層間はく離疲労き裂進展におよぼす繊維架橋の影響松原, 剛, MATSUBARA, Go, 尾野, 英夫, ONO, Hideo, 田中, 啓介, TANAKA, Keisuke 07 1900 (has links)
No description available.
|
18 |
高強度GFRPのモードⅡ層間はく離疲労き裂進展におよぼす応力比の影響松原, 剛, MATSUBARA, Go, 尾野, 英夫, ONO, Hideo, 田中, 啓介, TANAKA, Keisuke 04 1900 (has links)
No description available.
|
19 |
A Computational Study of Ammonia CombustionKhamedov, Ruslan 05 1900 (has links)
The utilization of ammonia as a fuel is a pragmatic approach to pave the way towards a low-carbon economy. Ammonia compromises almost 18 % of hydrogen by mass and accepted as one of the hydrogen combustion enablers with existing infrastructure for transportation and storage. From an environmental and sustainability standpoint, ammonia combustion is an attractive energy source with zero carbon dioxide emissions. However, from a practical point of view, the direct combustion of ammonia is not feasible due to the low reactive nature of ammonia. Due to the low combustion intensity, and the higher nitrogen oxide emission, ammonia was not fully investigated and there is still a lack of fundamental knowledge of ammonia combustion. In this thesis, the computational study of ammonia premixed flame characteristics under various hydrogen addition ratios and moderate or intense low oxygen dilution (MILD) conditions were investigated. Particularly, the heat release characteristics and dominant reaction pathways were analyzed. The analysis revealed that the peak of heat release for ammonia flame occurs near burned gas, which raises a question regarding the physics of this.
Further analysis identified the dominant reaction pathways and the intermediate species (NH2 and OH), which are mainly produced in the downstream and back diffused to the leading edge and produce some heat in the low-temperature zone. To overcome low reactivity and poor combustion performance of pure ammonia mixture, the onboard ammonia decomposition to hydrogen and nitrogen followed by blending ammonia with hydrogen is a feasible approach to improve ammonia combustion intensity. With increasing hydrogen amount in the mixture, the enhancement of heat release occurs due to both transport and chemical effect of hydrogen. Another approach to mitigate the low reactive nature of ammonia may be eliminated by applying the promising combustion concept known as MILD combustion. The heat release characteristics and flame marker of ammonia turbulent premixed MILD combustion were investigated. The high fidelity numerical simulation was performed to answer fundamental questions of ammonia turbulent premixed combustion characteristics.
|
20 |
Micromechanics of Asperity Interaction in Wear – A Numerical ApproachAcharya, Sunil January 2005 (has links)
No description available.
|
Page generated in 0.0551 seconds