Spelling suggestions: "subject:"eliability evaluation"" "subject:"deliability evaluation""
1 |
Size Optimization of Utility-Scale Solar PV System Considering Reliability EvaluationChen, Xiao 19 July 2016 (has links)
In this work, a size optimization approach for utility-scale solar photovoltaic (PV) systems is proposed. The purpose of the method is to determine the optimal solar energy generation capacity and optimal location by the minimizing total system cost subject to the constraint that the system reliability requirements. Due to the stochastic characteristic of the solar irradiation, the reliability performance of a power system with PV generation is quite different from the one with only conventional generation. Basically, generation adequacy level of power systems containing solar energy is evaluated by reliability assessment and the most widely used reliability index is the loss of load probability (LOLP). The value of LOLP depends on various factors such as power output of the PV system, outage rate of generating facilities and the system load profile. To obtain the LOLP, the Monte Carlo method is applied to simulate the reliability performance of the solar penetrated power system. The total system cost model consists of the system installation cost, mitigation cost, and saving fuel and operation cost. Mitigation cost is accomplished with N-1 contingency analysis. The cost function minimization process is implemented in Genetic Algorithm toolbox, which has the ability to search the global optimum with relative computational simplicity. / Master of Science
|
2 |
Basic considerations in electrical generating capacity adequacy evaluationHuang, Dange 20 September 2005
The primary function of a power system is to supply its customers with electrical energy as economically as possible and with acceptable reliability and quality. Generating capacity adequacy evaluation is the oldest and most extensively studied aspect of power system reliability assessment. A wide range of methods have been developed to perform this evaluation. Two computer programs were developed based on the analytical and simulation techniques and used as tools in this research work. A number of basic considerations in generating capacity adequacy evaluation are investigated. Generating unit residence time distributions and peaking load units are incorporated in the analysis.<p> Two commonly encountered misconceptions regarding the basic system reliability indices are examined by applying the two programs to two reliability test systems. Reliability index probability distributions can be used to supplement the information provided by the expected index values. The concept of creating distributions and the additional information that can be obtained is illustrated in this thesis. <p> Generating unit residence time distributions are generally categorized as being either exponential or non-exponential in form. The exponential distribution is utilized, however, in virtually all practical system studies. The impacts on the system reliability of non-exponential unit state residence time distributions are examined in this research. <p> Peaking load units and base load units have different operating characteristics. The functions of peaking load units vary with changes in the system operating conditions. This is examined in this research. <p>The conclusions and techniques presented in this thesis should prove valuable in power system planning and operation.
|
3 |
Basic considerations in electrical generating capacity adequacy evaluationHuang, Dange 20 September 2005 (has links)
The primary function of a power system is to supply its customers with electrical energy as economically as possible and with acceptable reliability and quality. Generating capacity adequacy evaluation is the oldest and most extensively studied aspect of power system reliability assessment. A wide range of methods have been developed to perform this evaluation. Two computer programs were developed based on the analytical and simulation techniques and used as tools in this research work. A number of basic considerations in generating capacity adequacy evaluation are investigated. Generating unit residence time distributions and peaking load units are incorporated in the analysis.<p> Two commonly encountered misconceptions regarding the basic system reliability indices are examined by applying the two programs to two reliability test systems. Reliability index probability distributions can be used to supplement the information provided by the expected index values. The concept of creating distributions and the additional information that can be obtained is illustrated in this thesis. <p> Generating unit residence time distributions are generally categorized as being either exponential or non-exponential in form. The exponential distribution is utilized, however, in virtually all practical system studies. The impacts on the system reliability of non-exponential unit state residence time distributions are examined in this research. <p> Peaking load units and base load units have different operating characteristics. The functions of peaking load units vary with changes in the system operating conditions. This is examined in this research. <p>The conclusions and techniques presented in this thesis should prove valuable in power system planning and operation.
|
4 |
Reliability evaluation of electric power system including wind power and energy storageHu, Po 18 November 2009
Global environmental concerns associated with conventional energy generation have led to the rapid growth of wind energy applications in electric power systems. Growing demand for electrical energy and concerns associated with limited reserves of fossil fuels are also responsible for the development and increase in wind energy utilization. Many jurisdictions around the world have set high wind penetration targets in their energy generation mix.<p>
The contribution of wind farms to the overall system reliability is limited by the uncertainty in power output from the highly variable energy source. High wind penetration can lead to high risk levels in power system reliability and stability. In order to maintain the system stability, wind energy dispatch is usually restricted and energy storage is considered to smooth out the fluctuations and improve supply continuity. The research work presented in this thesis is focused on developing reliability models for evaluating the benefits associated with wind power and energy storage in electric power generating systems. An interactive method using a sequential Monte Carlo simulation technique that incorporates wind farm and energy storage operating strategies is developed and employed in this research. Different operating strategies are compared and the resulting benefits are evaluated. Important system impacts on the reliability benefits from wind power and energy storage are illustrated. Hydro facilities with energy storage capability can alleviate the impact of wind power fluctuations and also contribute to system adequacy. A simulation technique for an energy limited hydro plant and wind farm coordination is developed considering the chronological variation in the wind, water and the energy demand. The IEEE four-state model is incorporated in the developed technique to recognize the intermittent operation of hydro units. Quantitative assessment of reliability benefits from effective utilization of wind and water resources are conducted through a range of sensitivity studies. The information provided and the examples illustrated in this thesis should prove useful to power system planners and wind developers to assess the reliability benefit from utilizing wind energy and energy storage and the coordination between wind and hydro power in electric power systems.
|
5 |
Reliability evaluation of electric power system including wind power and energy storageHu, Po 18 November 2009 (has links)
Global environmental concerns associated with conventional energy generation have led to the rapid growth of wind energy applications in electric power systems. Growing demand for electrical energy and concerns associated with limited reserves of fossil fuels are also responsible for the development and increase in wind energy utilization. Many jurisdictions around the world have set high wind penetration targets in their energy generation mix.<p>
The contribution of wind farms to the overall system reliability is limited by the uncertainty in power output from the highly variable energy source. High wind penetration can lead to high risk levels in power system reliability and stability. In order to maintain the system stability, wind energy dispatch is usually restricted and energy storage is considered to smooth out the fluctuations and improve supply continuity. The research work presented in this thesis is focused on developing reliability models for evaluating the benefits associated with wind power and energy storage in electric power generating systems. An interactive method using a sequential Monte Carlo simulation technique that incorporates wind farm and energy storage operating strategies is developed and employed in this research. Different operating strategies are compared and the resulting benefits are evaluated. Important system impacts on the reliability benefits from wind power and energy storage are illustrated. Hydro facilities with energy storage capability can alleviate the impact of wind power fluctuations and also contribute to system adequacy. A simulation technique for an energy limited hydro plant and wind farm coordination is developed considering the chronological variation in the wind, water and the energy demand. The IEEE four-state model is incorporated in the developed technique to recognize the intermittent operation of hydro units. Quantitative assessment of reliability benefits from effective utilization of wind and water resources are conducted through a range of sensitivity studies. The information provided and the examples illustrated in this thesis should prove useful to power system planners and wind developers to assess the reliability benefit from utilizing wind energy and energy storage and the coordination between wind and hydro power in electric power systems.
|
6 |
Reliability and fault tolerance modelling of multiprocessor systemsValdivia, Roberto Abraham January 1989 (has links)
Reliability evaluation by analytic modelling constitute an important issue of designing a reliable multiprocessor system. In this thesis, a model for reliability and fault tolerance analysis of the interconnection network is presented, based on graph theory. Reliability and fault tolerance are considered as deterministic and probabilistic measures of connectivity. Exact techniques for reliability evaluation fail for large multiprocessor systems because of the enormous computational resources required. Therefore, approximation techniques have to be used. Three approaches are proposed, the first by simplifying the symbolic expression of reliability; the other two by applying a hierarchical decomposition to the system. All these methods give results close to those obtained by exact techniques.
|
7 |
Physical layer security in co-operative MIMO networks - key generation and reliability evaluationChen, Kan January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Balasubramaniam Natarajan / Widely recognized security vulnerabilities in current wireless radio access technologies undermine the benefits of ubiquitous mobile connectivity. Security strategies typically rely on bit-level cryptographic techniques and associated protocols at various levels of the data processing stack. These solutions have drawbacks that have slowed down the progress of new wireless services. Physical layer security approaches derived from an information theoretic framework have been recently proposed with secret key generation being the primary focus of this dissertation. Previous studies of physical layer secret key generation (PHY-SKG) indicate that a low secret key generation rate (SKGR) is the primary limitation of this approach. To overcome this drawback, we propose novel SKG schemes to increase the SKGR as well as improve the security strength of generated secret keys by exploiting multiple input and multiple output (MIMO), cooperative MIMO (co-op MIMO) networks. Both theoretical and numerical results indicate that relay-based co-op MIMO schemes, traditionally used to enhance LTE-A network throughput and coverage, can also increase SKGR. Based on the proposed SKG schemes, we introduce innovative power allocation strategies to further enhance SKGR. Results indicate that the proposed power allocation scheme can offer 15% to 30% increase in SKGR relative to MIMO/co-op MIMO networks with equal power allocation at low-power region, thereby improving network security. Although co-op MIMO architecture can offer significant improvements in both performance and security, the concept of joint transmission and reception with relay nodes introduce new vulnerabilities. For example, even if the transmitted information is secured, it is difficult but essential to monitor the behavior of relay nodes. Selfish or malicious intentions of relay nodes may manifest as non-cooperation. Therefore, we propose relay node reliability evaluation schemes to measure and monitor the misbehavior of relay nodes. Using a power-sensing based reliability evaluation scheme, we attempt to detect selfish nodes thereby measuring the level of non-cooperation. An overall node reliability evaluation, which can be used as a guide for mobile users interested in collaboration with relay nodes, is performed at the basestation. For malicious behavior, we propose a network tomography technique to arrive at node reliability metrics. We estimate the delay distribution of each internal link within a co-op MIMO framework and use this estimate as an indicator of reliability. The effectiveness of the proposed node reliability evaluations are demonstrated via both theoretical analysis and simulations results. The proposed PHY-SKG strategies used in conjunction with node reliability evaluation schemes represent a novel cross-layer approach to enhance security of cooperative networks.
|
8 |
Analysing and supporting the reliability decision-making process in computing systems with a reliability evaluation framework / Analyser et supporter le processus de prise de décision dans la fiabilité des systèmes informatiques avec un framework d'évaluation de fiabilitéKooli, Maha 01 December 2016 (has links)
La fiabilité est devenu un aspect important de conception des systèmes informatiques suite à la miniaturisation agressive de la technologie et le fonctionnement non interrompue qui introduisent un grand nombre de sources de défaillance des composantes matérielles. Le système matériel peut être affecté par des fautes causées par des défauts de fabrication ou de perturbations environnementales telles que les interférences électromagnétiques, les radiations externes ou les neutrons de haute énergie des rayons cosmiques et des particules alpha. Pour les systèmes embarqués et systèmes utilisés dans les domaines critiques pour la sécurité tels que l'avionique, l'aérospatiale et le transport, la présence de ces fautes peut endommager leurs composants et conduire à des défaillances catastrophiques. L'étude de nouvelles méthodes pour évaluer la fiabilité du système permet d'aider les concepteurs à comprendre les effets des fautes sur le système, et donc de développer des produits fiables et sûrs. En fonction de la phase de conception du système, le développement de méthodes d'évaluation de la fiabilité peut réduire les coûts et les efforts de conception, et aura un impact positif le temps de mise en marché du produit.L'objectif principal de cette thèse est de développer de nouvelles techniques pour évaluer la fiabilité globale du système informatique complexe. L'évaluation vise les fautes conduisant à des erreurs logicielles. Ces fautes peuvent se propager à travers les différentes structures qui composent le système complet. Elles peuvent être masquées lors de cette propagation soit au niveau technologique ou architectural. Quand la faute atteint la partie logicielle du système, elle peut endommager les données, les instructions ou le contrôle de flux. Ces erreurs peuvent avoir un impact sur l'exécution correcte du logiciel en produisant des résultats erronés ou empêcher l'exécution de l'application.Dans cette thèse, la fiabilité des différents composants logiciels est analysée à différents niveaux du système (en fonction de la phase de conception), mettant l'accent sur le rôle que l'interaction entre le matériel et le logiciel joue dans le système global. Ensuite, la fiabilité du système est évaluée grâce à des méthodologies d'évaluation flexible, rapide et précise. Enfin, le processus de prise de décision pour la fiabilité des systèmes informatiques est pris en charge avec les méthodes et les outils développés. / Reliability has become an important design aspect for computing systems due to the aggressive technology miniaturization and the uninterrupted performance that introduce a large set of failure sources for hardware components. The hardware system can be affected by faults caused by physical manufacturing defects or environmental perturbations such as electromagnetic interference, external radiations, or high-energy neutrons from cosmic rays and alpha particles.For embedded systems and systems used in safety critical fields such as avionic, aerospace and transportation, the presence of these faults can damage their components and leads to catastrophic failures. Investigating new methods to evaluate the system reliability helps designers to understand the effects of faults on the system, and thus to develop reliable and dependable products. Depending on the design phase of the system, the development of reliability evaluation methods can save the design costs and efforts, and will positively impact product time-to-market.The main objective of this thesis is to develop new techniques to evaluate the overall reliability of complex computing system running a software. The evaluation targets faults leading to soft errors. These faults can propagate through the different structures composing the full system. They can be masked during this propagation either at the technological or at the architectural level. When a fault reaches the software layer of the system, it can corrupt data, instructions or the control flow. These errors may impact the correct software execution by producing erroneous results or prevent the execution of the application leading to abnormal termination or application hang.In this thesis, the reliability of the different software components is analyzed at different levels of the system (depending on the design phase), emphasizing the role that the interaction between hardware and software plays in the overall system. Then, the reliability of the system is evaluated via a flexible, fast, and accurate evaluation framework. Finally, the reliability decision-making process in computing systems is comprehensively supported with the developed framework (methodology and tools).
|
9 |
Bulk electric system reliability evaluation incorporating wind power and demand side managementHuang, Dange 25 February 2010
Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework.<p>
Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed correlations and the interactive effects of wind power and load forecast uncertainty on system reliability are examined. The concept of the security cost associated with operating in the marginal state in the well-being framework is incorporated in the economic analyses associated with system expansion planning including wind power and load forecast uncertainty. Overall reliability cost/worth analyses including security cost concepts are applied to select an optimal wind power injection strategy in a bulk electric system. The effects of the various demand side management measures on system reliability are illustrated using the system, load point, and well-being indices, and the reliability index probability distributions. The reliability effects of demand side management procedures in a bulk electric system including wind power and load forecast uncertainty considerations are also investigated. The system reliability effects due to specific demand side management programs are quantified and examined in terms of their reliability benefits.
|
10 |
Weather effect considerations in reliability evaluation of electrical transmission and distribution systemsAcharya, Janak Raj 02 September 2005
<p>The weather environment has a significant impact on the reliability of a power system due to its effect on the system failure mechanisms of overhead circuits and on the operational ability of an electric power utility. The physical stresses created by weather increase the failure rates of transmission or distribution lines operating in adverse weather conditions, resulting in increased coincident failures of multiple circuits. Exceptionally severe weather can cause immense system damages and significantly impact the reliability performance. Recognition of the pertinent weather impacts clearly indicates the need to develop appropriate models and techniques that incorporate variable weather conditions for realistic estimation of reliability indices.</p> <p>This thesis illustrates a series of multi-state weather models that can be utilized for predictive reliability assessment incorporating adverse and extremely adverse weather conditions. The studies described in this thesis are mainly focused on the analyses using the three state weather model. A series of multi-state weather models are developed and utilized to assess reliability performance of parallel redundant configurations. The application of weather modeling in reliability evaluation is illustrated using a practical transmission system. The thesis presents an approach to identify weather specific contributions to system reliability indices and illustrates the technique by utilizing a test distribution system. The analysis of a range of reliability distributions with regard to major event day segmentation is presented.</p><p>The research work illustrated in this thesis clearly illustrates that reliability indices estimated without recognition of weather situations are unrealistic and that at minimum the three state weather model should be applied in reliability evaluation of systems residing in varying weather environments. The conclusions, concepts and techniques presented in this thesis should prove useful in practical application.</p>
|
Page generated in 0.1169 seconds