• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 33
  • 26
  • 21
  • 11
  • 9
  • 6
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 260
  • 125
  • 101
  • 83
  • 62
  • 60
  • 59
  • 57
  • 57
  • 57
  • 44
  • 43
  • 39
  • 36
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Control of Switched Reluctance Motors Considering Mutual Inductance

Bae, Han-Kyung 15 August 2000 (has links)
A novel torque control algorithm, which adopts a two-phase excitation, is proposed to improve the performance of the Switched Reluctance Motor (SRM) drive. By exciting two adjacent phases instead of single phase, the changing rate and the magnitude of the phase currents are much reduced. Therefore the existing problems caused by the single-phase excitation such as large torque ripple during commutation, increased audible noise and fatigue of the rotor shaft are mitigated. The electromagnetic torque is efficiently distributed to each phase by the proposed Torque Distribution Function (TDF) that also compensates the effects of mutual coupling. To describe the effects of mutual coupling between phases, a set of voltage and torque equations is newly derived for the two-phase excitation. Parameters of the SRM are obtained by Finite Element Analysis (FEA) and verified by measurements. It is shown that the mutual inductance of two adjacent phases partly contributes to generate the electromagnetic torque and introduces coupling between two adjacent phases in the current or flux linkage control loop, which has been neglected in the single-phase excitation. The dynamics of the current or flux linkage loop are coupled and nonlinear due to the mutual inductance between two adjacent phases and the time varying nature of inductance. Each phase current or flux linkage needs to be controlled precisely to achieve the required performance. A feedback linearizing current controller is proposed to linearize and decouple current control loop along with a gain scheduling scheme to maintain performance of the current control loop regardless of rotor position as well as a feedback linearizing flux linkage controller. Finally, to reduce current or flux linkage ripple, a unipolar switching strategy is proposed. The unipolar switching strategy effectively doubles the switching frequency without increasing the actual switching frequency of the switches. This contributes to the mitigation of current or flux linkage ripple and hence to the reduction of the torque ripple. / Ph. D.
142

Performance Improvements of Multi-Channel Interleaving Voltage Regulator Modules with Integrated Coupling Inductors

Wong, Pit-Leong 25 April 2001 (has links)
The emergence of the Intel Pentium TM processor necessitates that a dedicated converter, the voltage regulator module (VRM), be physically located very close to the processor in computer power systems. The efficiency and transient response specifications of the VRM place contradictory requirements on the inductance. This dissertation discusses possible VRM inductor designs to improve efficiency without compromising transient responses. The multi-channel interleaving buck converter is the most popular topology for present VRMs. Analysis in this work shows that the small-signal model of an n-channel interleaving buck can be simplified as a single buck converter. The equivalent inductance is 1/n of the inductance in the interleaving channel. The equivalent switching frequency is n times the switching frequency in each channel. Through the transient response analysis, the critical inductance of the VRM is identified. The critical inductance is a tradeoff point between transient response and efficiency. The inductances smaller than the critical inductance have equal transient responses. For the inductances larger than the critical inductance, the VRM transient voltage spikes increase with the inductance. The critical inductance is the largest inductance that gives the fastest transient responses. The critical inductance is a function of the control bandwidth and the load transient steps. Although multi-channel interleaving reduces the current ripple stress on the output capacitors, it cannot reduce the current ripples in each channel. The large current ripples reduce the efficiency of the VRM. With the proposed concept of integrated coupling inductors between channels, the converters have larger equivalent inductances in steady-state operation and smaller equivalent inductances in transient response. The steady-state current ripples can be reduced without compromising the transient response. The overall efficiency of the converter is improved. In order to evaluate the application of the coupling inductor concept in multi-channels, an appropriate magnetic model is required. This dissertation proposes a flux reluctance model for the core and winding structures. With this reluctance model and mathematical transformations, the coupled inductors can be decoupled in the electric circuit simulation model. This reduces the complexity of the model when a large number of inductors are coupled. The model can be easily scaled to model the structures that involve more inductors. Examples are presented to show the application of this proposed model. / Ph. D.
143

Effects of Input Power Factor Correction on Variable Speed Drive Systems

Lee, Shiyoung 08 April 1999 (has links)
The use of variable speed drive (VSD) systems in the appliance industry is growing due to emerging high volume of fractional horsepower VSD applications. Almost all of the appliance VSDs have no input power factor correction (PFC) circuits. This results in harmonic pollution of the utility supply which could be avoided. The impact of the PFC circuit in the overall drive system efficiency, harmonic content, magnitude of the system input current and input power factor is particularly addressed in this dissertation along with the development of analytical methods applicable to the steady-state analysis of input power factor corrected VSD systems. Three different types of motors - the switched reluctance motor (SRM), permanent magnet brushless dc motor (PMBDC) and dc motor (DCM) are employed in this study. The C-dump converter topology, a single switch per phase converter, is adopted for the prototype SRM- and PMBDC-based VSD systems. The conventional full-bridge converter is used for DCM-based VSD systems. Four-quadrant controllers, utilizing PI speed and current control loops for the PMBDC- and DCM-based VSD system, are developed and their design results are verified with experiment and simulation. A single-quadrant controller with a PI speed feedback loop is employed for the SRM-based VSD system. The analysis of each type of VSD system includes development of loss models and establishment of proper operational modes. The magnitude of the input current harmonic spectra is measured and compared with and without a front-end PFC converter. One electromagnetic compatibility (EMC) standard, IEC 1000-3-2 which describes the limitation on harmonic current emission is modified for 120V ac system. This modified standard is utilized as the reference to evaluate the measured input current harmonics. The magnitude of input current harmonics for a VSD system are greatly reduced with PFC preregulators. While the input PFC circuit draws a near sinusoidal current from an ac source, it lowers the overall VSD system efficiency and increases cost of the overall system. / Ph. D.
144

Design of Switched Reluctance Motors and Development of a Universal Controller for Switched Reluctance and Permanent Magnet Brushless DC Motor Drives

Vijayraghavan, Praveen 03 December 2001 (has links)
Switched Reluctance Machines (SRMs) are receiving significant attention from industries in the last decade. They are extremely inexpensive, reliable and weigh less than other machines of comparable power outputs. Although the design principles of the machine are available as a concatenation of many different sources, the need for a unified, step-by-step design procedure from first principles of electromagnetics is an absolute requirement. This dissertation discusses a procedure that can be applied by engineers with a basic background in electromagnetics. Subsequent to the design of the machine, existing finite element software can do the analysis of the machine. However, this is a laborious process and the need for an analytical method is preferable to verify the design procedure before the final verification by finite elements. The analytical procedure as well as a procedure to calculate iron losses is also developed in this dissertation. A prototype machine has been developed as an example of the design process and an existing prototype is analyzed to verify the analysis procedure. The similarities between the SRM and the Permanent Magnet Brushless DC Machine (PMDBC) beg the consideration of the development of a converter that can be used to drive either machine. One such converter has been developed in this dissertation. The design of the drive for both the machines is seen to be very similar. As a consequence, a universal controller that can be used to operate both machines has been developed and implemented with a DSP. Simulations and experimental correlation for both drives have been presented. / Ph. D.
145

Design and Implementation of a Novel Single-Phase Switched Reluctance Motor Drive System

Staley, Amanda Martin 22 August 2001 (has links)
Single phase switched reluctance machines (SRMs) have a special place in the emerging high-volume, low-cost and low-performance applications in appliances and also in high-speed low-power motor drives in various industrial applications. Single phase SRMs have a number of drawbacks: low power density as they have only 50% utilization of windings, lack of self-starting feature unless otherwise built in to the machine, most of the times with permanent magnets or sometimes with distinct and special machine rotor configurations or additional mechanisms. Many of these approaches are expensive or make the manufacturing process more difficult. In order to overcome such disadvantages a method involving interpoles and windings is discussed in this research. Also, a new and novel converter topology requiring only a single switch and a single diode is realized. This research tests the concepts and feasibility of this new single-phase SRM motor topology and converter in one quadrant operation. The converter electronics and a simple minimum component, minimum cost analog converter are designed and implemented. The entire system is simulated and evaluated on its advantages and disadvantages. Simple testing without load is performed. This system has a large number of possibilities for development. Due to its lightweight, compact design and efficient, variable high-speed operation, the system might find many applications in pumps, fans, and drills. / Master of Science
146

Analysis and Design of a Novel E-Core Common-Pole Switched Reluctance Machine

Lee, Cheewoo 26 March 2010 (has links)
In this dissertation, a novel two-phase switched reluctance machine (SRM) with a stator comprised of E-core structure having minimum stator core iron is presented for low-cost high-performance applications. In addition, three new magnetic structures for the E-core SRM comprising two segmented stator cores or a monolithic stator core are proposed for good manufacturability, mechanically robustness, ease of assembly, and electromagnetic performance improvement. Each E-core stator in the segmented structure has three poles with two small poles at the ends having windings and a large center pole containing no copper windings. The common stator pole at the centers in the segmented E-core is shared by both phases during operation. Other benefits of the common poles contributing to performance enhancement are short flux paths, mostly flux-reversal-free-stator, constant minimum reluctance around air gap, and wide pole arc equal to one rotor pole pitch. Therefore, two additional common poles in the monolithic E-core configuration are able to significantly improve efficiency due to more positive torque and less core loss by the unique design. Using a full MEC analysis, the effect of the common-pole structure on torque enhancement is analytically verified. Efficiency estimated from the dynamic simulation is higher by 7% and 12% at 2000 rpm and by 3% and 7 % at 3000 rpm for the segmented and single-body SRMs, respectively, compared to a conventional SRM with four stator poles and two rotor poles. The new E-core SRMs are suitable for low-cost high-performance applications which are strongly cost competitive since all the new E-core SRMs have 20% cost savings on copper and the segmented E-core SRMs have 20% steel savings as well. Strong correlation between simulated and experimentally measured results validates the feasibility of the E-core common-pole structure and its performance. A simple step-by-step analytical design procedure suited for iterative optimization with small computational effort is developed with the information of the monolithic E-core SRM, and the proposed design approach can be applied for other SRM configurations as well. For investigating thermal characteristics in the two-phase single-body E-core SRM, the machine is modeled by a simplified lumped-parameter thermal network in which there are nine major parts of the motor assembly. / Ph. D.
147

Development of CAE system for switched motor drive systems

Bedingfield, Ralph Andrew 31 October 2009 (has links)
In order to present technological advances (both old and new) to a wider variety of engineers, new methods such as Computer Aided Engineering (CAE) must be adopted. By defining the requirements, design, and implementation of such an environment, the design and product development cycle can be both improved and reduced. The ability to upgrade existing software tools as well as include new tools should be examined. This thesis presents the design of a general purpose CAE environment for motor drive systems. The development of a CAE package for Switched Reluctance Motor (SRM) drive systems is used to illustrate the method. Two existing software packages are modified for inclusion, and the development of a new module for the dynamic analysis of the entire drive system is presented. / Master of Science
148

Design of a PC based Data Acquistion System for a Switched Reluctance Motor

Chandramouli, G. 07 November 2012 (has links)
The Switched Reluctance Motors(SRM) have gained considerable attention in the variable speed drive market mainly due to the simple construction of the motor and the possibility of developing low cost converters and controllers. As these machines are under development, a considerable amount of research effort is directed to the experimental performance evaluation of the SRM drives. System efficiency, electromagnetic torque, torque ripple, output and losses are some of the required measurements. / Master of Science
149

Analysis and design of a novel controller architecture and design methodology for speed control of switched reluctance motors

Jackson, Terry W. 07 November 2008 (has links)
This paper presents a novel controller architecture and speed control design methodology suitable for low cost, low performance switched reluctance motor drives. By utilizing inexpensive components in a simple, compact architecture, a low cost controller is developed which achieves a performance level similar to many high performance controllers. A speed control design methodology is established and analyzed based on the linearized small signal model of the switched reluctance motor. This unique control methodology is simple and provides a starting point for further research into speed/current controller parameter design for switched reluctance motors. The analysis, design and realization of the speed controller are presented. The derivation of the design methodology for speed controlled, switched reluctance motor drives is discussed, along with computer simulations for verification. Experimental results utilizing the proposed architecture and design methodology verify the control design and performance capabilities of the speed controller system. / Master of Science
150

Modeling and Implementation of Controller for Switched Reluctance Motor With Ac Small Signal Model

Wang, Xiaoyan 19 October 2001 (has links)
As traditional control schemes, open-loop Hysteresis and closed-loop pulse-width-modulation (PWM) have been used for the switched reluctance motor (SRM) current controller. The Hysteresis controller induces large unpleasant audible noises because it needs to vary the switching frequency to maintain constant Hysteresis current band. In contract, the PWM controller is very quiet but difficult to design proper gains and control bandwidth due to the nonlinear nature of the SRM. In this thesis, the ac small signal modeling technique is proposed for linearization of the SRM model such that a conventional PI controller can be designed accordingly for the PWM current controller. With the linearized SRM model, the duty-cycle to output transfer function can be derived, and the controller can be designed with sufficient stability margins. The proposed PWM controller has been simulated to compare the performance against the conventional Hysteresis controller based system. It was found that through the frequency spectrum analysis, the noise spectra in audible range disappeared with the fixed switching frequency PWM controller, but was pronounced with the conventional Hysteresis controller. A hardware prototype is then implemented with digital signal processor to verify the quiet nature of the PWM controller when running at 20 kHz switching frequency. The experimental results also indicate a stable current loop operation. / Master of Science

Page generated in 0.0555 seconds