• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mi-2 chromatin remodeling factor functions in sensory organ development through proneural gene repression in Drosophila

YAMASAKI, Yasutoyo, NISHIDA, Yasuyoshi January 2006 (has links)
No description available.
2

Characterizing the role of Nucleosome Remodeling Factor (NURF) in tumorigenesis and metastatic progression using mouse models of breast cancer.

Alkhatib, Suehyb 20 June 2012 (has links)
Increasingly the role of epigenetic machinery as a bridge between underlying DNA sequence and cellular phenotype is being discovered. The establishment of a myriad of unique cellular types sharing identical gene sequences in a multicellular organism gives a broad sense for the inherent role of epigenetic influence on cell differentiation. Importantly, the epigenetic mechanisms involved in establishing cell identity unsurprisingly contribute to diseased states, including cancer. Recent research continues to elucidate contributory roles of epigenetic mechanisms, such as DNA methylation, histone modification, and microRNA regulation, in human cancers. Additionally, chromatin remodelers, such as the Nucleosome Remodeling Factor (NURF), have been identified as important regulators for normal cell biology. While much has been done to identify and characterize the role of NURF chromatin remodeling complex as a key regulator of development in a number of model organisms, little has been published on the implications of NURF in diseases such as cancer. Our preliminary data shows dysregulation of E-cadherins, N-cadherins, and MHC-I genes in Bptf (an essential subunit of NURF) knocked down murine breast cancer cell lines. These proteins have well documented roles in the development and metastatic progression of cancers. To study the effect of Bptf knockdown on the development and progression of cancer we injected Bptf knocked down mouse breast cancer cell lines, 4T1, 66cl4, and 67NR, into syngenic BALB/c mice. Our findings reveal decreased tumor growth in 66cl4 and 67NR as measured by tumor weight at 3-4 weeks post injection. Tumor growth did not appear to be significantly affected in 4T1 challenged mice. However, mice inoculated with Bptf knockdown 4T1 cell lines have decreased metastasis to lungs as compared to control while metastasis of 66cl4 tumors to the lungs appear unaffected. To assess the role of the immune system in decreasing tumor growth in BALB/c mice, we injected 66cl4 tumors into NOD-SCID-Gamma (NSG) immune deficient mice. The tumors from these mice show no difference in tumor growth between Bptf knockdown and control tumors, implicating a role for the immune system regulating the decreased tumor weight in BALB/c mice. To delineate which immune cell effector may impede breast cancer carcinogenesis, we performed an in vitro natural killer (NK) cell cytotoxicity assay against 66cl4 tumors and found greater susceptibility to NK killing in Bptf knockdown tumors.
3

Recherche des partenaires de l’ARN hélicase à boîte DEAD de levure Ded1 / Identifying and characterizing the protein partners of the yeast DEAD-box “helicase” Ded1

Senissar, Meriem 30 September 2013 (has links)
L’ARN hélicase à boite DEAD de la levure S.cerevisiae Ded1 est une protéine essentielle dont la fonction a été conservée au cours de l’évolution. Ses homologues fonctionnels sont impliqués dans le développement et le cycle cellulaire. Ded1 a longtemps été associée à l’étape de scanning de la région 5’UTR des ARNm au niveau de l’initiation de la traduction. Nous avons utilisé différentes approches comme les co-immunoprécipitations, des analyses de spectrométrie de masse, des tests de complémentation génétique, de séparation des complexes sur gradients de saccharose, des expériences de localisation in situ et d’enzymologie pour montrer que Ded1 interagissait physiquement avec des complexes cytoplasmique et nucléaire de liaison à la coiffe des ARNm. Nous avons également montré que Ded1 peut passer du noyau vers le cytoplasme par différentes voies d’export nucléaire. De façon intéressante, ses partenaires protéines sont capables de stimuler son activité ATPase. De plus, nous avons montré qu’il existait un lien génétique entre Ded1 et ses partenaires. Nous avons également montré que Ded1 colocalise partiellement avec ses partenaires dans des gradients de saccharose, suggérant que Ded1 pourrait être associée à certains mRNPs. Nos résultats encore préliminaires indiquent que Ded1 pourrait s’associer à d’autre ARNs coiffés. Ainsi, Ded1 pourrait remodeler les complexes associés à différentes étapes de la vie des ARN coiffés. / The budding yeast DEAD-box RNA helicase Ded1 is an essential yeast protein that is closely related to a subfamily of DEAD-box proteins that are involved in developmental and cell-cycle regulation. Ded1 is generally considered to be a translation-initiation factor that helps the 40S ribosome scan the mRNA from the 5' 7-methylguanosine cap to the AUG start codon. We have used IgG pulldown experiments, mass spectroscopy analyses, genetic experiments, saccharose gradients, in situ localizations, and enzymatic assays to show that Ded1 is a cap-associated factor that actively shuttles between the cytoplasm and the nucleus. We show that Ded1 physically interacts with various cap-associated factors and that its enzymatic activity is stimulated by these factors. By using various mutated proteins, we show that Ded1 is genetically linked to these factors. Ded1 comigrates with these factors on saccharose gradients, but the peak of Ded1 sediments slightly heavier than for the other factors, which suggests that Ded1 is predominately associated with a subset of the mRNPs. Finally, purification of the protein complexes associated with Ded1 and subsequent analysis by nanoLC-MS/MS indicates that Ded1 is associated with both nuclear and cytoplasmic mRNPs. Preliminary experiements showed that Ded1 can associate with other capped RNA. We conclude that Ded1 may function as a remodeling factor that is needed to form the different complexes associated with the different processing steps of the capped RNA.

Page generated in 0.0763 seconds