• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Linear semi-empirical kernel-driven bidirectional reflectance distribution function models in monitoring semi-arid grasslands from space

Chopping, M. J. January 1998 (has links)
No description available.
2

Applications of GIS in community based forest management in Australia (and Nepal)

Baral, Himlal January 2004 (has links) (PDF)
Community forestry is now a popular approach in forest management globally. Although local communities have previously been involved in forest management in various minor ways, community-based forestry is very new in the Australian context. Because of the multiple interests of forest users and other community interest groups, a wider range of up-to-date information is being requested in community forestry, than has been used in ‘conventional’ government-based forest management in the past. The overall aim of this research was to explore the potential and constraints for the application of Geographic Information System (GIS) technology in community forest management in Australia and to relate the results also to Nepal. Specific objectives were to: (i) review the applications of GIS in forestry and community forestry worldwide, (ii) determine stakeholders’ views on their requirements for the use of GIS in community-based forest management, (iii) prepare and demonstrate various practical applications of GIS requested by community groups in the Wombat State Forest, (iv) identify the strengths and limitations of GIS in community forestry, and (v) relate findings on GIS applications in Australia to community forestry in Nepal. This study involved a combination of three approaches: review of global literature on GIS, use of GIS and related technologies, and participatory action research. A wide variety of spatial information was identified through community groups as important for community forest planning and management.
3

Applications of GIS in community based forest management in Australia (and Nepal)

Baral, Himlal January 2004 (has links) (PDF)
Community forestry is now a popular approach in forest management globally. Although local communities have previously been involved in forest management in various minor ways, community-based forestry is very new in the Australian context. Because of the multiple interests of forest users and other community interest groups, a wider range of up-to-date information is being requested in community forestry, than has been used in ‘conventional’ government-based forest management in the past. The overall aim of this research was to explore the potential and constraints for the application of Geographic Information System (GIS) technology in community forest management in Australia and to relate the results also to Nepal. Specific objectives were to: (i) review the applications of GIS in forestry and community forestry worldwide, (ii) determine stakeholders’ views on their requirements for the use of GIS in community-based forest management, (iii) prepare and demonstrate various practical applications of GIS requested by community groups in the Wombat State Forest, (iv) identify the strengths and limitations of GIS in community forestry, and (v) relate findings on GIS applications in Australia to community forestry in Nepal. This study involved a combination of three approaches: review of global literature on GIS, use of GIS and related technologies, and participatory action research. A wide variety of spatial information was identified through community groups as important for community forest planning and management.
4

Agronomic Suitability Studies in the Russian Altai Using Remote Sensing and GIS / Untersuchungen der Landwirtschaftseignung im Russischen Altai unter Verwendung von Fernerkundungsdaten und GIS

Kelgenbaeva, Kamilya 05 June 2008 (has links) (PDF)
The doctoral thesis describes methodologies and appropriate adaptations of existing solutions to model land suitability in two ways for the valley and basin areas of the South-Siberian Altai Mountains within a geo-information system (GIS) environment. Starting-point approaches are: 1) the Agricultural Soil Suitability Model „Almagra” and Land Capability Model “Cervatana”/MicroLEIS System (De la Rosa et. al 1992, 1998) developed for Mediterranean regions and a method specifically compiled by Burlakova L. M. (1988) for the Altai based on the weighted means of a factor set. 2) For comparison purposes, second, third and fourth versions of the same model are developed using three different types of Fuzzy Logic approaches. They are used to present how Gauss membership functions of particular classes can be computed as different classes and how variables taking values in ranges can be handled in a mathematical way. Furthermore, the paper presents ideas on how remote sensing might interact with the geo-information system (GIS) where - like in the present case – the required input geo-data are not fully sufficient to (i) feed the models formalising soil and climatic conditions, and (ii) to characterise the patterns of land management within the study area. Three agricultural crops (summer wheat, sunflowers and potatoes) are relevant to the Altai Region at a regional level and are, therefore considered. A rating is classified using five suitability classes according to the FAO classification (1976). For the case study the Uimon Basin was chosen. Social and economic factors are so far excluded but can be added within a further phase of development. / Diese Doktorarbeit beschreibt Methoden und geeignete Anpassungen bereits existierender Lösungen, um auf zwei verschiedenen Wegen die Landeignung für die Tal- und Beckenregionen der Südsibirischen Altaigebirges innerhalb eines Geoinformationssystems zu modellieren (GIS). Die Ausgangsmethoden sind: 1) die Bodeneignungsmodelle „Almagra" and „Cervatana“ (MicroLEIS System), entwickelt für die Mittelmeerregionen (De la Rosa et al. 1992 and 1998) und die „Gewichtsmethode“, welche Burlakova L. M. (1988) speziell für die Altairegion entwickelte. Letztgenannte Methode basiert auf den gewichteten Mitteln für eine gegebene Anzahl von Faktoren. 2) Zum Vergleich, die zweite, dritte und vierte Version des gleichen Modells mit drei unterschiedlichen Typen wurden mit Fuzzy-Logik-Methoden entwickelt. Sie werden benutzt, um darzustellen, wie unscharfe Mengen zum einen die Berechnung von Gauß-Mitgliedschaftsfunktionen bestimmter Klassen veranschaulichen können, welche zu anderen Klassen gehören, und wie die Variablen in einer mathematischen Handhabung angefasst werden können. Außerdem stellt diese Arbeit Ideen vor, wie die Fernerkundung das Geoinformationssystem (GIS) eingesetzt werden kann, wenn - wie im vorliegenden Fall - nur unzureichend Geodaten vorhanden sind, (i) um in die Modellierung der Boden- und Klimabedingungen einzugehen und (ii) um die Charakteristik des Landmanagements im Untersuchungsgebiet zu kennzeichnen. Drei landwirtschaftliche Agrarkulturen (Sommerweizen, Sonnenblumen und Kartoffeln) sind für die Altairegion auf regionaler Ebene von Bedeutung und wurden daher in die vorliegende Untersuchung einbezogen. Die Bewertung erfolgte nach fünf Eignungskategorien, entsprechend der FAO Klassifikation (1976). Das Uimon-Becken wurde als Untersuchungsgebiet ausgewählt. Soziale und ökonomische Faktoren wurden bisher ausgeschlossen, können aber innerhalb einer weiteren Entwicklungsphase hinzugenommen werden.
5

The remote sensing and GIS applied analysis evolution space time of Icapui municipality coastline, Cearà - Brazil / Sensoriamento remoto e SIG aplicados à anÃlise da evoluÃÃo espaÃotemporal da linha de costa do municÃpio de IcapuÃ, Cearà - Brasil

Wallason Farias de Souza 06 April 2016 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / The coastline is a dynamic environment and its constant morphodynamic adjustments resulting from natural and human processes. The municipality of Icapuà is situated at the eastern end of the state of Cearà - Brazil, has approximately 45 km of coastline and is one of the most complex environmental systems of CearÃ, with varying morphologies of Quaternary origin, which are preserved stretches and impacts of human actions. The main objective of this research is to analyze the evolution timeline (1987-2014) of the coastline of IcapuÃ, analyzing in an integrated manner the local coastal dynamics. The research was conducted in five main stages: bibliographic and cartographic survey, field work, preparation and database analysis in GIS, the diagnosis of evolution with the development of cartographic products and projection scenarios. The coastal plain was compartmentalized into three sectors studies (west, central and east) and used four mathematical and statistical procedures extension "Digital Shoreline Analysis System 4.3" (DSAS) for ArcGIS 10.1, which allowed to compare the shorelines multitemporal extracted from remote sensors products through a base line and transects spaced 500 m apart. It was possible to estimate in meters, considering the clip timeline, the maximum variation (NSM), the absolute variation (SCE), the mean annual change (EPR) and annual linear regression trend (LRR). Assigns to the coastline five classes according to the processes identified in the sections, as follows: progradation continuous, mo*derate progradation and / or semi-relative stability, moderate erosion and / or semi-continuous and continuous erosion. It was evident that the most relevant progradational and erosive processes are present in the western sectors, subsectors erosion Retiro Grande, Redonda and Peroba with trends of -0.5 to -4 m / year, and central sectors with significant decreases in Barreiras da Sereia subsectors and Barrinha, that a decline of up to 115 meters in 27 years and trends between -1.2 and -4.5 m / year, with varying social and environmental impacts, while the eastern sector showed relative stability. From this, it was possible to discuss containment strategies erosion, project possible evolutionary scenarios and suggest directions for planning and management of the coastal zone of the municipality. / A linha de costa à um ambiente dinÃmico e os seus constantes ajustes morfodinÃmicos resultam de processos naturais e humanos. O MunicÃpio de Icapuà està localizado no extremo leste do Estado do Cearà - Brasil, possui aproximadamente 45 km de linha de costa e representa um dos mais complexos sistemas ambientais do litoral cearense, com variadas morfologias de origem QuaternÃria, trechos relativamente conservados e impactos decorrentes das aÃÃes humanas. O objetivo principal desta pesquisa à analisar a evoluÃÃo espaÃotemporal (1987-2014) da linha de costa de IcapuÃ, considerando de forma integrada a dinÃmica costeira local. A pesquisa foi realizada em cinco etapas principais: o levantamento bibliogrÃfico e cartogrÃfico, os trabalhos de campo, a elaboraÃÃo e anÃlise de banco de dados em SIG, o diagnÃstico da evoluÃÃo com a elaboraÃÃo de produtos cartogrÃficos e a projeÃÃo de cenÃrios. Segmentou-se a planÃcie litorÃnea em trÃs setores de estudos (oeste, central e leste) e foram aplicados quatro procedimentos matemÃticos e estatÃsticos da extensÃo Digital Shoreline Analysis System 4.3 (DSAS) para o ArcGIS 10.1, que permitiram comparar as linhas de costa multitemporais extraÃdas de produtos sensores remotos por meio de uma linha de base e transectos espaÃados em 500 metros entre si. Possibilitou-se estimar em metros, considerando o recorte espaÃotemporal, a variaÃÃo mÃxima (NSM), a variaÃÃo absoluta (SCE), a mÃdia de variaÃÃo anual (EPR) e a tendÃncia anual de regressÃo linear (LRR). AtribuÃram-se à linha de costa cinco classes conforme os processos identificados nos trechos, sendo eles: progradaÃÃo contÃnua, progradaÃÃo moderada e/ou semicontÃnua, relativa estabilidade, erosÃo moderada e/ou semicontÃnua e erosÃo contÃnua. Evidenciou-se que os processos progradacionais e erosivos mais relevantes se encontram nos setores oeste, com erosÃo nos subsetores Retiro Grande, Redonda e Peroba, com tendÃncias de -0,5 a -4 m/ano, e central com recuos significativos nos subsetores Barreiras da Sereia e Barrinha, essa com recuo de atà 115 metros em 27 anos e tendÃncias entre -1,2 e -4,5 m/ano, desencadeando variados impactos socioambientais, enquanto o setor leste denotou relativa estabilidade. Com suporte nisso, foi possÃvel discutir as estratÃgias de contenÃÃo da erosÃo, projetar possÃveis cenÃrios evolutivos e sugerir direcionamentos para o planejamento e a gestÃo da zona costeira do municÃpio.
6

Agronomic Suitability Studies in the Russian Altai Using Remote Sensing and GIS: Untersuchungen der Landwirtschaftseignung im Russischen Altai unter Verwendung von Fernerkundungsdaten und GIS

Kelgenbaeva, Kamilya 18 December 2007 (has links)
The doctoral thesis describes methodologies and appropriate adaptations of existing solutions to model land suitability in two ways for the valley and basin areas of the South-Siberian Altai Mountains within a geo-information system (GIS) environment. Starting-point approaches are: 1) the Agricultural Soil Suitability Model „Almagra” and Land Capability Model “Cervatana”/MicroLEIS System (De la Rosa et. al 1992, 1998) developed for Mediterranean regions and a method specifically compiled by Burlakova L. M. (1988) for the Altai based on the weighted means of a factor set. 2) For comparison purposes, second, third and fourth versions of the same model are developed using three different types of Fuzzy Logic approaches. They are used to present how Gauss membership functions of particular classes can be computed as different classes and how variables taking values in ranges can be handled in a mathematical way. Furthermore, the paper presents ideas on how remote sensing might interact with the geo-information system (GIS) where - like in the present case – the required input geo-data are not fully sufficient to (i) feed the models formalising soil and climatic conditions, and (ii) to characterise the patterns of land management within the study area. Three agricultural crops (summer wheat, sunflowers and potatoes) are relevant to the Altai Region at a regional level and are, therefore considered. A rating is classified using five suitability classes according to the FAO classification (1976). For the case study the Uimon Basin was chosen. Social and economic factors are so far excluded but can be added within a further phase of development. / Diese Doktorarbeit beschreibt Methoden und geeignete Anpassungen bereits existierender Lösungen, um auf zwei verschiedenen Wegen die Landeignung für die Tal- und Beckenregionen der Südsibirischen Altaigebirges innerhalb eines Geoinformationssystems zu modellieren (GIS). Die Ausgangsmethoden sind: 1) die Bodeneignungsmodelle „Almagra" and „Cervatana“ (MicroLEIS System), entwickelt für die Mittelmeerregionen (De la Rosa et al. 1992 and 1998) und die „Gewichtsmethode“, welche Burlakova L. M. (1988) speziell für die Altairegion entwickelte. Letztgenannte Methode basiert auf den gewichteten Mitteln für eine gegebene Anzahl von Faktoren. 2) Zum Vergleich, die zweite, dritte und vierte Version des gleichen Modells mit drei unterschiedlichen Typen wurden mit Fuzzy-Logik-Methoden entwickelt. Sie werden benutzt, um darzustellen, wie unscharfe Mengen zum einen die Berechnung von Gauß-Mitgliedschaftsfunktionen bestimmter Klassen veranschaulichen können, welche zu anderen Klassen gehören, und wie die Variablen in einer mathematischen Handhabung angefasst werden können. Außerdem stellt diese Arbeit Ideen vor, wie die Fernerkundung das Geoinformationssystem (GIS) eingesetzt werden kann, wenn - wie im vorliegenden Fall - nur unzureichend Geodaten vorhanden sind, (i) um in die Modellierung der Boden- und Klimabedingungen einzugehen und (ii) um die Charakteristik des Landmanagements im Untersuchungsgebiet zu kennzeichnen. Drei landwirtschaftliche Agrarkulturen (Sommerweizen, Sonnenblumen und Kartoffeln) sind für die Altairegion auf regionaler Ebene von Bedeutung und wurden daher in die vorliegende Untersuchung einbezogen. Die Bewertung erfolgte nach fünf Eignungskategorien, entsprechend der FAO Klassifikation (1976). Das Uimon-Becken wurde als Untersuchungsgebiet ausgewählt. Soziale und ökonomische Faktoren wurden bisher ausgeschlossen, können aber innerhalb einer weiteren Entwicklungsphase hinzugenommen werden.
7

Assessing damages of agricultural land due to flooding in a lagoon region based on remote sensing and GIS: case study of the Quang Dien district, Thua Thien Hue province, central Vietnam

Nguyen, Ngoc Bich, Nguyen, Ngu Huu, Tran, Duc Thanh, Tran, Phuong Thi, Pham, Tung Gia, Nguyen, Tri Minh 29 December 2021 (has links)
This study aims to create a flood extent map with Sentinel imagery and to evaluate impacts on agricultural land in the lagoon region of central Vietnam. In this study, remote sensing images, obtained from 2017 to 2019, were used to simultaneously map the land cover status of a flood in the Quang Dien district. This study highlights flooded areas from Sentinel-2 images by calculating some indicators such as the Land Surface Water Index (LSWI) and the Enhanced Vegetation Index (EVI). Comparisons between the floodplain samples (GPS point-based) and flood mapping results, with the ground-truth data, indicate that the overall accuracy and Kappa coefficients were 97.9% and 0.62 respectively for 2017; the values for 2019 were 95.7% and 0.77 for the same coefficients. Land use maps overlying the flood-affected maps show that approximately 11% of the agriculture land area was affected by floods in 2019 comparison to a 10% in 2017. Wet rice was the most affected crop with the flooded area accounting for more than 70% of the district under each flood event. The most affected communes are: Quang An, Quang Phuoc and Quang Thanh. This study provides valuable information for flood disaster planning, mitigation and recovery activities in Vietnam. / Mục tiêu của nghiên cứu là lập bản đồ phân bố ngập lụt với hình ảnh vệ tinh Sentinel và đánh giá ảnh hưởng ngập lụt đến sử dụng đất nông nghiệp ở vùng đầm phá miền Trung, Việt Nam. Trong nghiên cứu này, ảnh viễn thám thu nhận giai đoạn 2017-2019 được sử dụng để xây dựng bản đồ hiện trạng sử dụng đất tại thời điểm bị ngập nước trên địa bàn huyện Quảng Điền. Nghiên cứu đã xác định được vùng ngập lụt ở huyện Quảng Điền bằng phương pháp phân loại chỉ số mặt nước (Land Surface Water Index – LSWI) và chỉ số khác biệt thực vật (Enhanced Vegetation Index-EVI) từ ảnh Sentinel-2. Xác định vùng nước lũ bị che khuất bởi mây bằng mô hình số hóa độ cao (DEM). Kết quả phân loại vùng ngập lụt được so sánh với giá trị tham chiếu mặt đất cho thấy độ chính xác tổng thể và hệ số Kappa đạt được trong năm 2017 là 97,9% và 0,62; trong khi năm 2019 đạt 95,7% và 0.77. Bản đồ sử dụng đất chồng lên bản đồ lũ lụt cho thấy khoảng 11% diện tích đất nông nghiệp bị ảnh hưởng bởi lũ lụt năm 2019 so với 10% năm 2017. Cây lúa nước là cây trồng bị ảnh hưởng nặng nề nhất, với diện tích bị ngập lụt chiếm hơn 70% diện tích lúa của huyện. Các xã bị ngập lớn là xã Quảng An, Quảng Phước và Quảng Thành. Nghiên cứu này cung cấp thông tin có giá trị cho các hoạt động lập kế hoạch, giảm nhẹ và phục hồi thiên tai lũ lụt ở Việt Nam.
8

Methodology for high resolution spatial analysis of the physical flood susceptibility of buildings in large river floodplains

Blanco-Vogt, Ángela 17 December 2015 (has links)
The impacts of floods on buildings in urban areas are increasing due to the intensification of extreme weather events, unplanned or uncontrolled settlements and the rising vulnerability of assets. There are some approaches available for assessing the flood damage to buildings and critical infrastructure. To this point, however, it is extremely difficult to adapt these methods widely, due to the lack of high resolution classification and characterisation approaches for built structures. To overcome this obstacle, this work presents: first, a conceptual framework for understanding the physical flood vulnerability and the physical flood susceptibility of buildings, second, a methodological framework for the combination of methods and tools for a large-scale and high-resolution analysis and third, the testing of the methodology in three pilot sites with different development conditions. The conceptual framework narrows down an understanding of flood vulnerability, physical flood vulnerability and physical flood susceptibility and its relation to social and economic vulnerabilities. It describes the key features causing the physical flood susceptibility of buildings as a component of the vulnerability. The methodological framework comprises three modules: (i) methods for setting up a building topology, (ii) methods for assessing the susceptibility of representative buildings of each building type and (iii) the integration of the two modules with technological tools. The first module on the building typology is based on a classification of remote sensing data and GIS analysis involving seven building parameters, which appeared to be relevant for a classification of buildings regarding potential flood impacts. The outcome is a building taxonomic approach. A subsequent identification of representative buildings is based on statistical analyses and membership functions. The second module on the building susceptibility for representative buildings bears on the derivation of depth-physical impact functions. It relates the principal building components, including their heights, dimensions and materials, to the damage from different water levels. The material’s susceptibility is estimated based on international studies on the resistance of building materials and a fuzzy expert analysis. Then depth-physical impact functions are calculated referring to the principal components of the buildings which can be affected by different water levels. Hereby, depth-physical impact functions are seen as a means for the interrelation between the water level and the physical impacts. The third module provides the tools for implementing the methodology. This tool compresses the architecture for feeding the required data on the buildings with their relations to the building typology and the building-type specific depth-physical impact function supporting the automatic process. The methodology is tested in three flood plains pilot sites: (i) in the settlement of the Barrio Sur in Magangué and (ii) in the settlement of La Peña in Cicuco located on the flood plain of Magdalena River, Colombia and (iii) in a settlement of the city of Dresden, located on the Elbe River, Germany. The testing of the methodology covers the description of data availability and accuracy, the steps for deriving the depth-physical impact functions of representative buildings and the final display of the spatial distribution of the physical flood susceptibility. The discussion analyses what are the contributions of this work evaluating the findings of the methodology’s testing with the dissertation goals. The conclusions of the work show the contributions and limitations of the research in terms of methodological and empirical advancements and the general applicability in flood risk management.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – Magangué, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 203 / In vielen Städten nehmen die Auswirkungen von Hochwasser auf Gebäude aufgrund immer extremerer Wetterereignisse, unkontrollierbarer Siedlungsbauten und der steigenden Vulnerabilität von Besitztümern stetig zu. Es existieren zwar bereits Ansätze zur Beurteilung von Wasserschäden an Gebäuden und Infrastrukturknotenpunkten. Doch ist es bisher schwierig, diese Methoden großräumig anzuwenden, da es an einer präzisen Klassifizierung und Charakterisierung von Gebäuden und anderen baulichen Anlagen fehlt. Zu diesem Zweck sollen in dieser Arbeit erstens ein Konzept für ein genaueres Verständnis der physischen Vulnerabilität von Gebäuden gegenüber Hochwasser dargelegt, zweitens ein methodisches Verfahren zur Kombination der bestehenden Methoden und Hilfsmittel mit dem Ziel einer großräumigen und hochauflösenden Analyse erarbeitet und drittens diese Methode an drei Pilotstandorten mit unterschiedlichem Ausbauzustand erprobt werden. Die Rahmenbedingungen des Konzepts grenzen die Begriffe der Vulnerabilität, der physischen Vulnerabilität und der physischen Anfälligkeit gegenüber Hochwasser ein und erörtern deren Beziehung zur sozialen und ökonomischen Vulnerabilität. Es werden die Merkmale der physischen Anfälligkeit von Gebäuden gegenüber Hochwasser als Bestandteil der Vulnerabilität definiert. Das methodische Verfahren umfasst drei Module: (i) Methoden zur Erstellung einer Gebäudetypologie, (ii) Methoden zur Bewertung der Anfälligkeit repräsentativer Gebäude jedes Gebäudetyps und (iii) die Kombination der beiden Module mit Hilfe technologischer Hilfsmittel. Das erste Modul zur Gebäudetypologie basiert auf der Klassifizierung von Fernerkundungsdaten und GIS-Analysen anhand von sieben Gebäudeparametern, die sich für die Klassifizierung von Gebäuden bezüglich ihres Risikopotenzials bei Hochwasser als wichtig erweisen. Daraus ergibt sich ein Ansatz zur Gebäudeklassifizierung. Die anschließende Ermittlung repräsentativer Gebäude beruht auf statistischen Analysen und Zugehörigkeitsfunktionen. Das zweite Modul zur Anfälligkeit repräsentativer Gebäude beruht auf der Ableitung von Funktion von Wasserstand und physischer Einwirkung. Es setzt die relevanten Gebäudemerkmale, darunter Höhe, Maße und Materialien, in Beziehung zum erwartbaren Schaden bei unterschiedlichen Wasserständen. Die Materialanfälligkeit wird aufgrund internationaler Studien zur Festigkeit von Baustoffen sowie durch Anwendung eines Fuzzy-Logic-Expertensystems eingeschätzt. Anschließend werden Wasserstand-Schaden-Funktionen unter Einbeziehung der Hauptgebäudekomponenten berechnet, die durch unterschiedliche Wasserstände in Mitleidenschaft gezogen werden können. Funktion von Wasserstand und physischer Einwirkung dienen hier dazu, den jeweiligen Wasserstand und die physischen Auswirkung in Beziehung zueinander zu setzen. Das dritte Modul stellt die zur Umsetzung der Methoden notwendigen Hilfsmittel vor. Zur Unterstützung des automatisierten Verfahrens dienen Hilfsmittel, die die Gebäudetypologie mit der Funktion von Wasserstand und physischer Einwirkung für Gebäude in Hochwassergebieten kombinieren. Die Methoden wurden anschließend in drei hochwassergefährdeten Pilotstandorten getestet: (i) in den Siedlungsgebieten von Barrio Sur in Magangué und (ii) von La Pena in Cicuco, zwei Überschwemmungsgebiete des Magdalenas in Kolumbien, und (iii) im Stadtgebiet von Dresden, das an der Elbe liegt. Das Testverfahren umfasst die Beschreibung der Datenverfügbarkeit und genauigkeit, die einzelnen Schritte zur Analyse der. Funktion von Wasserstand und physischer Einwirkung repräsentativer Gebäude sowie die Darstellung der räumlichen Verteilung der physischen Anfälligkeit für Hochwasser. In der Diskussion wird der Beitrag dieser Arbeit zur Beurteilung der Erkenntnisse der getesteten Methoden anhand der Ziele dieser Dissertation analysiert. Die Folgerungen beleuchten abschließend die Fortschritte und auch Grenzen der Forschung hinsichtlich methodischer und empirischer Entwicklungen sowie deren allgemeine Anwendbarkeit im Bereich des Hochwasserschutzes.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – Magangué, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 203 / El impacto de las inundaciones sobre los edificios en zonas urbanas es cada vez mayor debido a la intensificación de los fenómenos meteorológicos extremos, asentamientos no controlados o no planificados y su creciente vulnerabilidad. Hay métodos disponibles para evaluar los daños por inundación en edificios e infraestructuras críticas. Sin embargo, es muy difícil implementar estos métodos sistemáticamente en grandes áreas debido a la falta de clasificación y caracterización de estructuras construidas en resoluciones detalladas. Para superar este obstáculo, este trabajo se enfoca, en primer lugar, en desarrollar un marco conceptual para comprender la vulnerabilidad y susceptibilidad física de edificios por inudaciones, en segundo lugar, en desarrollar un marco metodológico para la combinación de los métodos y herramientas para una análisis de alta resolución y en tercer lugar, la prueba de la metodología en tres sitios experimentales, con distintas condiciones de desarrollo. El marco conceptual se enfoca en comprender la vulnerabilidad y susceptibility de las edificaciones frente a inundaciones, y su relación con la vulnerabilidad social y económica. En él se describen las principales características físicas de la susceptibilidad de edificicaiones como un componente de la vulnerabilidad. El marco metodológico consta de tres módulos: (i) métodos para la derivación de topología de construcciones, (ii) métodos para evaluar la susceptibilidad de edificios representativos y (iii) la integración de los dos módulos a través herramientas tecnológicas. El primer módulo de topología de construcciones se basa en una clasificación de datos de sensoramiento rémoto y procesamiento SIG para la extracción de siete parámetros de las edficaciones. Este módulo parece ser aplicable para una clasificación de los edificios en relación con los posibles impactos de las inundaciones. El resultado es una taxonomía de las edificaciones y una posterior identificación de edificios representativos que se basa en análisis estadísticos y funciones de pertenencia. El segundo módulo consiste en el análisis de susceptibilidad de las construcciones representativas a través de funciones de profundidad del impacto físico. Las cuales relacionan los principales componentes de la construcción, incluyendo sus alturas, dimensiones y materiales con los impactos físicos a diferentes niveles de agua. La susceptibilidad del material se calcula con base a estudios internacionales sobre la resistencia de los materiales y un análisis a través de sistemas expertos difusos. Aquí, las funciones de profundidad de impacto físico son considerados como un medio para la interrelación entre el nivel del agua y los impactos físicos. El tercer módulo proporciona las herramientas necesarias para la aplicación de la metodología. Estas herramientas tecnológicas consisten en la arquitectura para la alimentación de los datos relacionados a la tipología de construcciones con las funciones de profundidad del impacto físico apoyado en procesos automáticos. La metodología es probada en tres sitios piloto: (i) en el Barrio Sur en Magangué y (ii) en la barrio de La Peña en Cicuco situado en la llanura inundable del Río Magdalena, Colombia y (iii) en barrio Kleinzschachwitz de la ciudad de Dresden, situado a orillas del río Elba, en Alemania. Las pruebas de la metodología abarca la descripción de la disponibilidad de los datos y la precisión, los pasos a seguir para obtener las funciones profundidad de impacto físico de edificios representativos y la presentación final de la distribución espacial de la susceptibilidad física frente inundaciones El discusión analiza las aportaciones de este trabajo y evalua los resultados de la metodología con relación a los objetivos. Las conclusiones del trabajo, muestran los aportes y limitaciones de la investigación en términos de avances metodológicos y empíricos y la aplicabilidad general de gestión del riesgo de inundaciones.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – Magangué, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 203

Page generated in 0.1368 seconds