• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 180
  • 69
  • 21
  • 12
  • 12
  • 10
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 329
  • 329
  • 321
  • 183
  • 175
  • 173
  • 65
  • 42
  • 42
  • 38
  • 37
  • 37
  • 33
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Characterization of [11C]Methyl-Losartan as a Novel Radiotracer for PET Imaging of the AT1 Receptor

Antoun, Rawad 09 March 2011 (has links)
The Angiotensin II Type 1 (AT1) receptor is the main receptor responsible for the effects of the renin-angiotensin system, and its expression pattern is altered in several diseases. [11C]Methyl-Losartan has been developed based on the clinically used AT1 receptor antagonist Losartan. The aim of this work is to characterize the pharmacokinetics, repeatability and reliability of measurements, binding specificity and selectivity of [11C]Methyl-Losartan in rats using in vivo small animal positron emission tomography (PET) imaging, ex vivo biodistribution and in vitro autoradiography methods. Also, we aim to measure the presence of metabolites in the kidney and plasma using high-performance liquid chromatography. We have demonstrated in vivo that [11C]Methyl-Losartan is taken up in the AT1 receptor-rich kidneys and that it is displaceable by selective AT1 receptor antagonists. Using ex vivo biodistribution, we have confirmed these results and demonstrated that [11C]Methyl-Losartan binds selectively to the AT1 receptor over the AT2, Mas and β-adrenergic receptors. In vitro autoradiography results confirmed these renal binding selectivity studies. [11C]Methyl-Losartan was also shown to have one and two C-11 labeled metabolites in the plasma and kidneys, respectively. In conclusion, [11C]Methyl-Losartan is a promising agent for studying the AT1 receptor in rat models with normal and altered AT1 receptor expression using small animal PET imaging.
92

Upregulation of Renin Angiotensin Aldosterone System (RAAS) by Methylglyoxal: Role in Hypertension

2013 December 1900 (has links)
In 2008 the global prevalence of hypertension [high blood pressure (BP), systolic ≥140 mmHg and/or diastolic ≥90 mmHg] was around 40% in adults > 25 yrs of age, according to the 2013 WHO statistics. Hypertension is a major risk factor for myocardial infarction, heart failure and stroke. Currently, around 20% of the Canadian population is affected by hypertension. Hypertension is more closely associated with diabetes. More than two thirds of people with diabetes have hypertension, alongwith increased activity of the renin angiotensin aldosterone (RAAS) system. The RAAS plays a major role in maintaining fluid balance, vascular tone and BP. The components of the RAAS include the hormone renin, which cleaves angiotensinogen, a circulating inactive peptide into angiotensin I. Angiotensin converting enzyme (ACE) converts angiotensin I into the active peptide angiotensin II (Ang II). Ang II causes vasoconstriction, sodium reabsorption from the kidney tubules and also release of the hormone, aldosterone, from the adrenal cortex. The epidemic of hypertension, diabetes and obesity is widely attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. However, the underlying molecular mechanisms are far from clear. A high fructose diet increases BP in Sprague-Dawley (SD) rats; along with elevated plasma and aortic levels of methylglyoxal (MG). MG is a reactive dicarbonyl compound mainly formed as an intermediate during glycolysis. Small amounts of MG are also formed during amino acid (threonine) and fatty acid metabolism. MG reacts with certain proteins to form irreversible advanced glycation end products (AGEs). MG has high affinity for arginine, lysine and cysteine. Plasma MG levels are increased in hypertensive rats and diabetic patients. However, it is not yet clear whether MG is the cause or effect of hypertension. Moreover, safe and specific MG scavengers are not available. The aim of the project was to determine the effect of MG and a high fructose diet on the RAAS and the BP in male SD rats. The hypothesis that L-arginine, and its inactive isomer D-arginine, can efficiently scavenge MG in vitro, was also tested. Male SD rats were treated with a continuous infusion of MG with a subcutaneous minipump for 4 weeks, or with a high fructose diet (60% of total calories) for 16 weeks. We also used isolated aortic rings from 12 week old normal male SD rats to study endothelial function. Organs / tissues, cultured human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs) were used for molecular studies. HPLC, Western blotting and Q-PCR were used to measure MG, reduced glutathione (GSH), proteins and mRNA, respectively. siRNA for angiotensinogen and the receptor for advanced glycation endproducts (RAGE) were used to study mechanisms. MG treated rats developed a significant increase in BP and plasma levels of aldosterone, renin, angiotensin and catecholamines. MG level, and protein and mRNA for angiotensin, AT1 receptor, adrenergic α1D receptor and renin were significantly increased in the aorta and/or kidney of MG treated rats, a novel finding. Alagebrium, a MG scavenger and AGEs breaker, attenuated the above effects of MG. Treatment of cultured VSMCs with MG or high glucose (25mM) significantly increased cellular MG, and protein and mRNA for nuclear factor kappa B (NF-κB), angiotensin, AT1 and α1D receptors, which were prevented by inhibition of NF-κB, and by alagebrium. Silencing of mRNA for RAGE prevented the increase in NF-kB induced by MG. Silencing of mRNA for angiotensinogen prevented the increase in NF-κB, angiotensin, AT1 and α1D receptors’ protein. Fructose treated rats developed a significant increase in BP. MG level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE) and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of fructose and MG were attenuated by metformin, a MG scavenger and AGEs inhibitor. In experiments to test the MG scavenging action of arginine, both D-arginine and L-arginine prevented the attenuation of acetylcholine-induced endothelium-dependent vasorelaxation by MG and high glucose. However, the inhibitory effect of the NOS inhibitor, Nω-nitro-L-arginine methyl ester, on vasorelaxation was prevented only by L-arginine, but not by D-arginine. MG and high glucose increased protein expression of arginase, a novel finding, and also of NADPH oxidase 4 and NF-κB, and production of reactive oxygen species in HUVECs and VSMCs, which were attenuated by D- and L-arginine. However, D- and L-arginine did not attenuate MG and high glucose-induced increased arginase activity in VSMCs and the aorta. D- and L-arginine also attenuated the increased formation of the MG-specific AGE, Nε-carboxyethyl lysine, caused by MG and high glucose in VSMCs. In conclusion, MG activates NF-κB through RAGE and thereby increases renin angiotensin levels, a novel finding, and a probable mechanism of increase in BP. There is a strong association between elevated levels of MG, RAGE, NF-κB, mediators of the RAAS and BP in high fructose diet fed rats. Arginine attenuates the increased arginase expression, oxidative stress, endothelial dysfunction and AGEs formation induced by MG and high glucose, by an endothelial NOS independent mechanism.
93

Platelet and endothelial function : Polycystic Ovary Syndrome and the renin-angiotensin system.

Rajendran, Sharmalar January 2009 (has links)
The phenomenon of platelet hyperaggregability and decreased platelet responsiveness to nitric oxide (also termed as nitric oxide resistance), documented in several cardiovascular disease states, is associated with adverse cardiovascular outcomes. The series of experiments described in this thesis address primarily some aspects of the pathophysiology, epidemiology and therapy of the phenomenon of end-organ resistance to nitric oxide (NO) in two important conditions, that are closely associated with cardiovascular risk factors and disease states:- Polycystic ovary syndrome, which is closely linked with the metabolic syndrome and premature subclinical atherosclerosis. The renin-angiotensin system, which is recognized as a significant mediator in the pathophysiology of a number of cardiovascular disease states. The first study examined the epidemiology/pathophysiology of putative platelet/endothelial dysfunction in young individuals with PCOS. The subsequent studies focused on the potential impact of the renin-angiotensin system on platelet and endothelial function. This mechanistic review is set in the context of a number of recent major clinical studies which have demonstrated surprising efficacy of certain angiotensin-converting enzyme (ACE) inhibitors (ramipril and perindopril) in the prevention of thrombotic processes. Thus we tested the hypothesis whether ACE inhibitor ramipril sensitizes platelets to NO (as a potential mechanism for improved cardiovascular outcomes) in a high risk patient cohort. In addition, particular attention will be given to the emerging role of the heptapeptide Angiotensin- (1-7), a possible physiological antagonist to Angiotensin II in the vasculature and the limitation of the current literature concerning potential effects of the renin-angiotensin system on thrombotic mechanisms. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1348615 / Thesis (Ph.D.) - University of Adelaide, School of Medicine, 2009
94

Consequences of an altered intrauterine environment on the offspring???s renal, cardiovascular and renin angiotensin systems

O???Connell, Amanda Elizabeth, School of Medical Science, UNSW January 2006 (has links)
This thesis reports the effects of an altered intrauterine environment on the offspring???s renal, cardiovascular and renin angiotensin systems. After a midgestational asphyxial episode in fetal sheep (30 min total umbilical cord occlusion at 90 days; term 150 days) the hydrops that resulted had not completely resolved by 130 days. While the heart and kidneys were apparently unaffected, the brain and lung weights were 37% and 50% lower than sham values, respectively and there were joint contractures. The effects of maternal renal disease on the offspring were investigated. Although in utero fetuses of subtotally nephrectomised ewes (STNx) had altered urine flow rates, sodium excretion, haematocrits, plasma chloride and plasma renin levels, by 1-2 weeks after birth these values in the lambs (STNxL) were similar to controls (ConL) under baseline conditions. Body weight and the weights of most organs were similar, including the kidney, in which glomerular number was normal. In the neonatal period, the lambs were subjected to four challenges: furosemide (2 mg/kg intravenous bolus), infusion of angiotensin II and phenylephrine, intravenous infusion of 0.15M saline (50 ml/kg over 30 min) and haemorrhage (20% estimated blood volume over 10 min). These challenges revealed evidence of programming of several aspects of the renal, cardiovascular and renin angiotensin systems in the STNx offspring. As young adults at 6 months of age, male and female offspring of STNx ewes were normotensive and had normal renal function. On a high salt diet (HSD, 0.17M NaCl in 8L water for 5-7days), female offspring of both groups did not become hypertensive. However, the STNx offspring must have retained salt and water as plasma sodium was increased and haematocrit was decreased. In the STNx offspring only, there was a relationship between glomerular filtration rate (GFR) and mean arterial pressure, indicating an inability to maintain a constant GFR in response to changes in arterial pressure.
95

Fetal programming of sheep for production on saltbush

Chadwick, Megan January 2009 (has links)
[Truncated abstract] Saltbush is one of the few types of forage that will grow on salt affected land but, sheep struggle to maintain weight when grazing saltbush mainly because of its high salt content. Therefore, a strategy to improve salt tolerance of sheep would be beneficial to the profitable use of revegetated saline land. This could be done by manipulating the dietary salt load of pregnant or lactating ewes which could 'program', or permanently alter the physiology of their offspring to allow them to cope better with a high-salt diet as adults. When rat dams consume a high amount of salt during pregnancy, the salt balance mechanisms of their offspring are 'programmed' due to suppression of the offspring's renin-angiotensin system in early development. If this occurs in offspring from ewes grazing saltbush, beneficial adaptations may be programmed in these offspring which could allow them to better cope with the high-salt content of saltbush. I tested the general hypothesis that offspring born to ewes that consumed a high-salt or saltbush diet from mid-pregnancy to early lactation would have an increased capacity to cope with salt that would allow them gain weight when grazing saltbush in later life. To test this hypothesis, I pair-fed ewes either a high-salt diet (14% NaCl) or control diet (2% NaCl) in an animal house from day 60 of gestation until day 21 of lactation. During the same period, I also conducted a field experiment where ewes grazed on saltbush (supplemented with barley) or on pasture (supplemented with lupins). ... This led to the high-salt offspring retaining more salt than control animals. In contrast, the renin activity of saltbush was consistently lower than pasture offspring which allowed them to excrete salt more rapidly. In experiment three, the saltbush offspring gained tissue weight after grazing saltbush for 8 weeks, whereas the offspring in the other three treatments lost weight. High-salt and saltbush offspring also had higher greasy fleece weights at 22 months of age than their respective control groups. Feeding saltbush to ewes from mid-pregnancy to early lactation induces physiological adaptations in their offspring that allow them to cope better with salt and gain weight when grazing saltbush as adults, supporting my hypothesis. However, contrary to expectations, the high-salt offspring did not gain weight when grazing saltbush because their physiological adaptations, such as salt retention, did not allow them to cope better with a salt load. The reason that saltbush offspring showed different adaptations to highsalt offspring is likely to be because saltbush contains not only NaCl but also high amounts of other minerals such as potassium, and other plant compounds, which may influence the adaptive responses of the offspring. This research has direct implications for farmers because it shows they could utilize otherwise unproductive saltland by grazing pregnant ewes on saltbush to 'program' their offspring to gain weight when they graze saltbush later in life.
96

Klinisch-pharmakologische Untersuchungen zur pharmakotherapeutischen Beeinflussbarkeit der vaskulären Reagibilität bei gesunden Probanden und Patienten

Schindler, Christoph January 2008 (has links)
Zugl.: Dresden, Techn. Univ., Habil.-Schr., 2008
97

Hipertrofia cardíaca em camundongos submetidos à natação em diferentes volumes e intensidades de treinamento : avaliação do sistema renina angiotensina

Soares, Douglas dos Santos January 2017 (has links)
O exercício físico modula o sistema renina angiotensina (SRA), que tem um importante papel na fisiologia cardíaca, especialmente na promoção da hipertrofia cardíaca. O SRA pode ser dividido em dois eixos principais: o eixo clássico – representado pelo receptor AT1 (AT1R) ativado pela angiotensina II (ANG II) – e o eixo alternativo – que é ativado pela interação da angiotensina 1- 7 (ANG 1-7) com o receptor MAS (MASR). O balanço entre os eixos do SRA pode determinar um remodelamento cardíaco fisiológico ou patológico. Estudos têm demonstrado que altos volumes de exercício físico podem desencadear possíveis efeitos deletérios ao sistema cardiovascular. Neste contexto, nosso objetivo foi avaliar a hipertrofia cardíaca, o eixo clássico e o eixo alternativo do SRA no miocárdio de camundongos submetidos a variados volumes e intensidades de treinamento em natação. Para tal, camundongos balb/c foram divididos em três grupos: (I) sedentário (SED), (II) treinados 2x ao dia (T2) sem sobrecarga e (III) treinado 3x ao dia com sobrecarga de 2% do peso corporal (T3), totalizando 6 semanas de treinamento efetivo. Ambos os grupos treinados desenvolveram hipertrofia cardíaca, sem diferença nos níveis de fibrose. Bioquimicamente, observamos um aumento nos níveis do receptor MASR somente no grupo T2, enquanto que os níveis de AT1R aumentaram somente no grupo T3. Contudo, não foi observada alteração na concentração dos peptídeos ANGI, ANGII e ANG 1-7 no tecido cardíaco entre os grupos. Além do mais, o grupo T3 demonstrou um aumento na expressão de miosina de cadeia pesada- β em comparação ao grupo SED e redução da expressão da isoforma- @ em relação ao grupo T2. Em conclusão, nossos resultados sugerem que ambos os protocolos de exercício promoveram uma hipertrofia cardíaca semelhante, mas o protocolo com maior volume e intensidade promoveu uma ativação diferencial dos receptores do SRA e reativação de genes fetais. Estudos que avaliem protocolos com maior duração são necessários para esclarecer se estas mudanças representam uma ativação precoce dos mecanismos relatados para o desenvolvimento de um fenótipo com características patológicas. / Exercise promotes physiological cardiac hypertrophy and induces the activation of the renin angiotensin system (RAS), which plays an important role in cardiac physiology, both through the classical axis – represented by the angiotensin II receptor type 1 (AT1) activated by angiotensin II (ANG II) – and the alternative axis – which is activated by the angiotensin 1-7 interaction with the MAS receptor. However, very intense exercise protocols could have deleterious effects on the cardiovascular system. In this context, we aimed to analyze the cardiac hypertrophy phenotype, as well as the classical (ANGII/AT1) and alternative (ANG1-7/MAS) RAS axes, in the myocardium of mice submitted to varying volume and intensity swimming exercises for the development of cardiac hypertrophy. To this end, male balb/c mice were divided into three groups: (I) sedentary (SED), (II) swimming twice a day (T2) without overload, and (III) swimming three times a day with a 2% body weight overload (T3), totaling six weeks of training. Both training groups developed cardiac hypertrophy. Interestingly, we observed an increase in MAS receptor levels only in group T2, while AT1 levels increased only in group T3. However, no change was observed regarding the levels of angiotensin peptides ANG-I, ANG-II, and ANG1-7, in either group. In addition, group T3 displayed a higher expression of myosin heavy chain-β (MHC-β) and lower expression levels of the alpha isoform (MHC-@). Fibrosis was not observed in any of the groups. In conclusion, our results suggest that both exercise protocols promoted a similar cardiac hypertrophy phenotype, but the protocol applying increased volume and intensity resulted in differential activation of RAS receptors and fetal gene reactivation. Studies applying longer duration protocols could elucidate if these changes represent early activation of mechanisms related to hypertrophy development with phenotypic pathological characteristics.
98

Papel do sistema renina-angiotensina e do desequilíbrio redox em modelo experimental de pré-eclâmpsia induzida por L-NAME / The role of the renin-angiotensin system and redox imbalance in an experimental model of preeclampsia induced by L-NAME

Taline Anne da Silva Amaral 27 February 2012 (has links)
Pré-eclâmpsia (PE), uma síndrome sistêmica da gestação caracterizada por proteinúria e hipertensão, está associada a uma significativa mortalidade tanto materna quanto fetal. Eentretanto, sua fisiopatologia ainda não é totalmente compreendida. Apesar de um expressivo aumento da atividade do sistema renina-angiotensina (SRA) na gestação normal, a pressão arterial não aumenta. Além disso, a redução da pressão de perfusão intra-uterina promove um aumento na liberação de espécies reativas de oxigênio que podem contribuir para a hipertensão na gestação. Dessa forma, o objetivo deste trabalho foi estudar o papel do SRA vascular, assim como, do estresse oxidativo plasmático, cardiorenal e placentário para a regulação cardiovascular materna em ratas normotensas e em modelo de PE induzida por L-NAME. Foi observado um aumento da pessão arterial em animais que receberal L-NAME. As ratas grávidas + L-NAME apresentaram um menor ganho de massa corporal durante a gestação, menor múmero de filhotes vivos, maior número de abortos, menor massa placentária total e fetos com menor massa corporal. Foi observada uma redução na resposta vasodilatadora induzida por acetilcolina (ACh) e angiotensina (Ang) II, aumento na resposta vasodilatadora induzida por nitroglicerina (NG) e aumento na resposta vasoconstritora induzida por fenilefrina (Phe) e Ang II em LAM de ratas grávida e não grávidas que receberam L-NAME. Não foi observada diferença na expressão dos receptores AT1 e AT2 e das enzimas ECA, ECA2 e eNOS. Foi observado um aumento na concentração plasmática de renina e bradicinina (BK) em ratas grávidas + L-NAME e uma redução na concentração de Ang 1-7. As ratas grávidas e grávidas + L-NAME apresentaram um aumento nos níveis séricos de estradiol. Os níveis de malondialdeído e carbonilação de proteínas estava aumentados e a atividade das enzimas antioxidantes SOD e GPx estavam reduzidas em ratas grávidas e não grávidas que receberam L-NAME. A atividade da CAT não apresentou diferença entre os grupos. Em conclusão, uma redução na vasodilatação induzida pela Ang II associada a um aumento da vasoconstrição promovida por este peptídeo, sugerem uma contribuição do SRA no desenvolvimento das complicações características da PE observadas no modelo experimental de PE induzido por L-NAME. Do mesmo modo, a peroxidação lipídica e oxidação de proteínas aumentadas, assim como, as atividades enzimáticas antioxidantes reduzidas sugerem a contribuição de uma defesa antioxidante comprometida e um dano oxidativo aumentado para o desenvolvimento da hipertensão e disfunção endotelial, aumento da mortalidade fetal e retardo do crescimento intra-uterino observados no modelo de PE estudado. / Preeclampsia (PE), a systemic syndrome of pregnancy characterized by proteinuria and hypertension, is associated with significant morbidity and mortality to both mothers and fetuses, however its causes have not been completely clarified. Despite an expressive increase in renin-angiotensin system (RAS) activity in the normal pregnancy, blood pressure does not increase. Nevertheless, the role of RAS in PE is not well known. In PE, the reduction in intrauterine perfusion pressure promotes an increased release of reactive oxygen species, which may contribute to hypertension in pregnancy. In the present study, we investigated the role of the vascular RAS and the plasmatic, cardiorenal and placental oxidative stress to maternal cardiovascular regulation on normal pregnancy and in a animal model of preeclampsia which was induced by L-NAME. The bood pressure was increased in animals which received L-NAME. Pregnant + L-NAME rats had fat loss during pregnancy, increased number of death fetus, decreased number of fetus alive, lower total placental mass and lower pups weight. The vasodilator effect of acetylcholine (Ach) and angiotensin (Ang) II was reduced in pregnant + L-NAME and non-pregnant + L-NAME, otherwise, the vasodilator effect of nitroglycerine (NG) and the vasoconstrictor effect of phenilephrine (Phe) and Ang II were increased. The expression of AT1, AT2, ACE, ACE2 and eNOS were no significantly different among the four groups. The plasma levels of renin and bradykinin (BK) were increased in pregnant + L-NAME rats, while Ang 1-7 was reduced. The serum estradiol was increased in pregnant and pregnant + L-NAME rats. The levels of malondialdehyde and protein carbonyls were increased and activities of antioxidant enzymes SOD and GPx were lower in pregnant + L-NAME and non-pregnant + L-NAME animals, but CAT did now show significant difference among the four groups. In conclusion, the reduced vasodilator responde of Ang II associated to increased vasoconstrictor response of this peptide, suggest that RAS contribute to development of preeclampsia-like characteristics in this model of PE. Similarly, the increase of lipid peroxidation and protein oxidation, as the reduction of antioxidant activity suggest the involvement of a deficient mechanism of antioxidant defense and an increased oxidative damage contributing to development of hypertension, endothelial dysfunction, high fetus mortality and intrauterine growth restriction observed in this model of PE.
99

Papel do sistema renina-angiotensina e do desequilíbrio redox em modelo experimental de pré-eclâmpsia induzida por L-NAME / The role of the renin-angiotensin system and redox imbalance in an experimental model of preeclampsia induced by L-NAME

Taline Anne da Silva Amaral 27 February 2012 (has links)
Pré-eclâmpsia (PE), uma síndrome sistêmica da gestação caracterizada por proteinúria e hipertensão, está associada a uma significativa mortalidade tanto materna quanto fetal. Eentretanto, sua fisiopatologia ainda não é totalmente compreendida. Apesar de um expressivo aumento da atividade do sistema renina-angiotensina (SRA) na gestação normal, a pressão arterial não aumenta. Além disso, a redução da pressão de perfusão intra-uterina promove um aumento na liberação de espécies reativas de oxigênio que podem contribuir para a hipertensão na gestação. Dessa forma, o objetivo deste trabalho foi estudar o papel do SRA vascular, assim como, do estresse oxidativo plasmático, cardiorenal e placentário para a regulação cardiovascular materna em ratas normotensas e em modelo de PE induzida por L-NAME. Foi observado um aumento da pessão arterial em animais que receberal L-NAME. As ratas grávidas + L-NAME apresentaram um menor ganho de massa corporal durante a gestação, menor múmero de filhotes vivos, maior número de abortos, menor massa placentária total e fetos com menor massa corporal. Foi observada uma redução na resposta vasodilatadora induzida por acetilcolina (ACh) e angiotensina (Ang) II, aumento na resposta vasodilatadora induzida por nitroglicerina (NG) e aumento na resposta vasoconstritora induzida por fenilefrina (Phe) e Ang II em LAM de ratas grávida e não grávidas que receberam L-NAME. Não foi observada diferença na expressão dos receptores AT1 e AT2 e das enzimas ECA, ECA2 e eNOS. Foi observado um aumento na concentração plasmática de renina e bradicinina (BK) em ratas grávidas + L-NAME e uma redução na concentração de Ang 1-7. As ratas grávidas e grávidas + L-NAME apresentaram um aumento nos níveis séricos de estradiol. Os níveis de malondialdeído e carbonilação de proteínas estava aumentados e a atividade das enzimas antioxidantes SOD e GPx estavam reduzidas em ratas grávidas e não grávidas que receberam L-NAME. A atividade da CAT não apresentou diferença entre os grupos. Em conclusão, uma redução na vasodilatação induzida pela Ang II associada a um aumento da vasoconstrição promovida por este peptídeo, sugerem uma contribuição do SRA no desenvolvimento das complicações características da PE observadas no modelo experimental de PE induzido por L-NAME. Do mesmo modo, a peroxidação lipídica e oxidação de proteínas aumentadas, assim como, as atividades enzimáticas antioxidantes reduzidas sugerem a contribuição de uma defesa antioxidante comprometida e um dano oxidativo aumentado para o desenvolvimento da hipertensão e disfunção endotelial, aumento da mortalidade fetal e retardo do crescimento intra-uterino observados no modelo de PE estudado. / Preeclampsia (PE), a systemic syndrome of pregnancy characterized by proteinuria and hypertension, is associated with significant morbidity and mortality to both mothers and fetuses, however its causes have not been completely clarified. Despite an expressive increase in renin-angiotensin system (RAS) activity in the normal pregnancy, blood pressure does not increase. Nevertheless, the role of RAS in PE is not well known. In PE, the reduction in intrauterine perfusion pressure promotes an increased release of reactive oxygen species, which may contribute to hypertension in pregnancy. In the present study, we investigated the role of the vascular RAS and the plasmatic, cardiorenal and placental oxidative stress to maternal cardiovascular regulation on normal pregnancy and in a animal model of preeclampsia which was induced by L-NAME. The bood pressure was increased in animals which received L-NAME. Pregnant + L-NAME rats had fat loss during pregnancy, increased number of death fetus, decreased number of fetus alive, lower total placental mass and lower pups weight. The vasodilator effect of acetylcholine (Ach) and angiotensin (Ang) II was reduced in pregnant + L-NAME and non-pregnant + L-NAME, otherwise, the vasodilator effect of nitroglycerine (NG) and the vasoconstrictor effect of phenilephrine (Phe) and Ang II were increased. The expression of AT1, AT2, ACE, ACE2 and eNOS were no significantly different among the four groups. The plasma levels of renin and bradykinin (BK) were increased in pregnant + L-NAME rats, while Ang 1-7 was reduced. The serum estradiol was increased in pregnant and pregnant + L-NAME rats. The levels of malondialdehyde and protein carbonyls were increased and activities of antioxidant enzymes SOD and GPx were lower in pregnant + L-NAME and non-pregnant + L-NAME animals, but CAT did now show significant difference among the four groups. In conclusion, the reduced vasodilator responde of Ang II associated to increased vasoconstrictor response of this peptide, suggest that RAS contribute to development of preeclampsia-like characteristics in this model of PE. Similarly, the increase of lipid peroxidation and protein oxidation, as the reduction of antioxidant activity suggest the involvement of a deficient mechanism of antioxidant defense and an increased oxidative damage contributing to development of hypertension, endothelial dysfunction, high fetus mortality and intrauterine growth restriction observed in this model of PE.
100

Hipertrofia cardíaca em camundongos submetidos à natação em diferentes volumes e intensidades de treinamento : avaliação do sistema renina angiotensina

Soares, Douglas dos Santos January 2017 (has links)
O exercício físico modula o sistema renina angiotensina (SRA), que tem um importante papel na fisiologia cardíaca, especialmente na promoção da hipertrofia cardíaca. O SRA pode ser dividido em dois eixos principais: o eixo clássico – representado pelo receptor AT1 (AT1R) ativado pela angiotensina II (ANG II) – e o eixo alternativo – que é ativado pela interação da angiotensina 1- 7 (ANG 1-7) com o receptor MAS (MASR). O balanço entre os eixos do SRA pode determinar um remodelamento cardíaco fisiológico ou patológico. Estudos têm demonstrado que altos volumes de exercício físico podem desencadear possíveis efeitos deletérios ao sistema cardiovascular. Neste contexto, nosso objetivo foi avaliar a hipertrofia cardíaca, o eixo clássico e o eixo alternativo do SRA no miocárdio de camundongos submetidos a variados volumes e intensidades de treinamento em natação. Para tal, camundongos balb/c foram divididos em três grupos: (I) sedentário (SED), (II) treinados 2x ao dia (T2) sem sobrecarga e (III) treinado 3x ao dia com sobrecarga de 2% do peso corporal (T3), totalizando 6 semanas de treinamento efetivo. Ambos os grupos treinados desenvolveram hipertrofia cardíaca, sem diferença nos níveis de fibrose. Bioquimicamente, observamos um aumento nos níveis do receptor MASR somente no grupo T2, enquanto que os níveis de AT1R aumentaram somente no grupo T3. Contudo, não foi observada alteração na concentração dos peptídeos ANGI, ANGII e ANG 1-7 no tecido cardíaco entre os grupos. Além do mais, o grupo T3 demonstrou um aumento na expressão de miosina de cadeia pesada- β em comparação ao grupo SED e redução da expressão da isoforma- @ em relação ao grupo T2. Em conclusão, nossos resultados sugerem que ambos os protocolos de exercício promoveram uma hipertrofia cardíaca semelhante, mas o protocolo com maior volume e intensidade promoveu uma ativação diferencial dos receptores do SRA e reativação de genes fetais. Estudos que avaliem protocolos com maior duração são necessários para esclarecer se estas mudanças representam uma ativação precoce dos mecanismos relatados para o desenvolvimento de um fenótipo com características patológicas. / Exercise promotes physiological cardiac hypertrophy and induces the activation of the renin angiotensin system (RAS), which plays an important role in cardiac physiology, both through the classical axis – represented by the angiotensin II receptor type 1 (AT1) activated by angiotensin II (ANG II) – and the alternative axis – which is activated by the angiotensin 1-7 interaction with the MAS receptor. However, very intense exercise protocols could have deleterious effects on the cardiovascular system. In this context, we aimed to analyze the cardiac hypertrophy phenotype, as well as the classical (ANGII/AT1) and alternative (ANG1-7/MAS) RAS axes, in the myocardium of mice submitted to varying volume and intensity swimming exercises for the development of cardiac hypertrophy. To this end, male balb/c mice were divided into three groups: (I) sedentary (SED), (II) swimming twice a day (T2) without overload, and (III) swimming three times a day with a 2% body weight overload (T3), totaling six weeks of training. Both training groups developed cardiac hypertrophy. Interestingly, we observed an increase in MAS receptor levels only in group T2, while AT1 levels increased only in group T3. However, no change was observed regarding the levels of angiotensin peptides ANG-I, ANG-II, and ANG1-7, in either group. In addition, group T3 displayed a higher expression of myosin heavy chain-β (MHC-β) and lower expression levels of the alpha isoform (MHC-@). Fibrosis was not observed in any of the groups. In conclusion, our results suggest that both exercise protocols promoted a similar cardiac hypertrophy phenotype, but the protocol applying increased volume and intensity resulted in differential activation of RAS receptors and fetal gene reactivation. Studies applying longer duration protocols could elucidate if these changes represent early activation of mechanisms related to hypertrophy development with phenotypic pathological characteristics.

Page generated in 0.4986 seconds