• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo das propriedades termodinâmicas do modelo de Ashkin-Teller na presença de campo magnético aleatório. / Study of thermodynamics properties of Ashkin-Teller in random magnetic field

Bernardes, Luiz Antonio Bastos 27 October 1995 (has links)
A teoria de campo médio para o modelo de Ashkin-Teller com interações ferromagnéticas de longo alcance na presença de campos magnéticos aleatórios foi desenvolvida. Isso foi conseguido através do uso do truque de réplicas para a obtenção da energia livre e do estudo analítico das equações integrais acopladas dos parâmetros de ordem, da estabilidade de suas soluções e das suas expansões para T &#8804 Tc. Inicialmente, foram determinadas as expressões gerais das funções termodinâmicas do modelo no caso em que existiam três campos magnéticos aleatórios com distribuições gaussianas. Em seguida, foi examinado o caso particular do modelo com um só campo magnético aleatório na direção de Z = &#8249 &#948 S &#8250. A estratégia adotada se mostrou poderosa pois possibilitou a caracterização detalhada do diagrama de fases com várias superfícies de coexistência e das linhas de pontos críticos. As equações integrais das funções termodinâmicas desse caso particular foram discutidas e resolvidas numericamente para valores especiais das constantes de interação e da variância. Para o caso particular do modelo na presença de campos magnéticos aleatórios nas direções &#8249 S &#8250 e &#8249 &#948 &#8250, foram determinadas e discutidas as expressões das funções termodinâmicas. Foram também obtidas as equações das superfícies de instabilidade da solução paramagnética. Foi provado que a transição entre as fases paramagnética e de Baxter é sempre de primeira ordem. Outro resultado original da tese foi a verificação da existência da simetria de dilatação e contração do modelo de Potts na presença de campos magnéticos aleatórios. Essa simetria permite que o estudo da energia livre no intervalo q&#8712 (1,2) forneça o comportamento termodinâmico do sistema para todo q>2. / The meanfield theory of the long range Ashkin-Teller model in random fields was developed. This was obtained by using the replica trick and the study of the coupled integral equations for the order parameters, the stability of their solutions, and their expansions for T &#8804 Tc. Inicially, the expressions of the thermodynamic functions for the model in three random fields with Gaussian distributiuons were determined. After this, it was examined the particular case of the model with only one random field in the Z = &#8249 &#948 S &#8250 direction. The strategy revealed itself powerful by the detailed characterization of the phase diagram with several coexistence surfaces and lines of critical points. The integral equations of the thermodynamic functions for this particular case were discussed and numerically solved for special values of the interaction constants and field distribution variance. For the particular case of the model with random fields in the &#8249 S &#8250 and &#8249 &#948 &#8250, directions, the expressions were also determined and discussed. The equations of the instability surfaces for the paramagnetic solution were obtained, and it was proved that the para-Baxter transition line is always of first order. Another original result of the thesis was the verification of the the existence of the dilatation and contration symmetry in the Potts model with random fields. This symmetry permits that the study of the free energy in the q&#8712(1,2) interval supplies the thermodynamics behavior of the system for q>2.
2

Estudo das propriedades termodinâmicas do modelo de Ashkin-Teller na presença de campo magnético aleatório. / Study of thermodynamics properties of Ashkin-Teller in random magnetic field

Luiz Antonio Bastos Bernardes 27 October 1995 (has links)
A teoria de campo médio para o modelo de Ashkin-Teller com interações ferromagnéticas de longo alcance na presença de campos magnéticos aleatórios foi desenvolvida. Isso foi conseguido através do uso do truque de réplicas para a obtenção da energia livre e do estudo analítico das equações integrais acopladas dos parâmetros de ordem, da estabilidade de suas soluções e das suas expansões para T &#8804 Tc. Inicialmente, foram determinadas as expressões gerais das funções termodinâmicas do modelo no caso em que existiam três campos magnéticos aleatórios com distribuições gaussianas. Em seguida, foi examinado o caso particular do modelo com um só campo magnético aleatório na direção de Z = &#8249 &#948 S &#8250. A estratégia adotada se mostrou poderosa pois possibilitou a caracterização detalhada do diagrama de fases com várias superfícies de coexistência e das linhas de pontos críticos. As equações integrais das funções termodinâmicas desse caso particular foram discutidas e resolvidas numericamente para valores especiais das constantes de interação e da variância. Para o caso particular do modelo na presença de campos magnéticos aleatórios nas direções &#8249 S &#8250 e &#8249 &#948 &#8250, foram determinadas e discutidas as expressões das funções termodinâmicas. Foram também obtidas as equações das superfícies de instabilidade da solução paramagnética. Foi provado que a transição entre as fases paramagnética e de Baxter é sempre de primeira ordem. Outro resultado original da tese foi a verificação da existência da simetria de dilatação e contração do modelo de Potts na presença de campos magnéticos aleatórios. Essa simetria permite que o estudo da energia livre no intervalo q&#8712 (1,2) forneça o comportamento termodinâmico do sistema para todo q>2. / The meanfield theory of the long range Ashkin-Teller model in random fields was developed. This was obtained by using the replica trick and the study of the coupled integral equations for the order parameters, the stability of their solutions, and their expansions for T &#8804 Tc. Inicially, the expressions of the thermodynamic functions for the model in three random fields with Gaussian distributiuons were determined. After this, it was examined the particular case of the model with only one random field in the Z = &#8249 &#948 S &#8250 direction. The strategy revealed itself powerful by the detailed characterization of the phase diagram with several coexistence surfaces and lines of critical points. The integral equations of the thermodynamic functions for this particular case were discussed and numerically solved for special values of the interaction constants and field distribution variance. For the particular case of the model with random fields in the &#8249 S &#8250 and &#8249 &#948 &#8250, directions, the expressions were also determined and discussed. The equations of the instability surfaces for the paramagnetic solution were obtained, and it was proved that the para-Baxter transition line is always of first order. Another original result of the thesis was the verification of the the existence of the dilatation and contration symmetry in the Potts model with random fields. This symmetry permits that the study of the free energy in the q&#8712(1,2) interval supplies the thermodynamics behavior of the system for q>2.
3

Dynamique quantique hors-équilibre et systèmes désordonnés pour des atomes ultrafroids bosoniques / Out of equilibrium quantum dynamics and disordered systems in bosonic ultracold atoms

Sciolla, Bruno 13 September 2012 (has links)
Durant cette thèse, je me suis intéressé à deux thématiques générales qui peuvent être explorées dans des systèmes d’atomes froids : d’une part, la dynamique hors-équilibre d’un système quantique isolé, et d’autre part l’influence du désordre sur un système fortement corrélé à basse température. Dans un premier temps, nous avons développé une méthode de champ moyen, qui permet de résoudre la dynamique unitaire dans un modèle à géométrie particulière, le réseau complètement connecté. Cette approche permet d’établir une correspondance entre la dynamique unitaire du système quantique et des équations du mouvement classique. Nous avons mis à profit cette méthode pour étudier le phénomène de transition dynamique qui se signale, dans des modèles de champ moyen, par une singularité des observables aux temps longs, en fonction des paramètres initiaux ou finaux de la trempe. Nous avons montré l’existence d’une transition dynamique quantique dans les modèle de Bose-Hubbard, d’Ising en champ transverse et le modèle de Jaynes-Cummings. Ces résultats confirment l’existence d’un lien fort entre la présence d’une transition de phase quantique et d’une transition dynamique.Dans un second temps, nous avons étudié un modèle de théorie des champs relativiste avec symétrie O(N) afin de comprendre l’influence des fluctuations sur ces singularités. À l’ordre dominant en grand N, nous avons montré que la transition dynamique s’apparente à un phénomène critique. En effet, à la transition dynamique, les fonctions de corrélations suivent une loi d’échelle à temps égaux et à temps arbitraires. Il existe également une longueur caractéristique qui diverge à l’approche du point de transition. D’autre part, il apparaît que le point fixe admet une interprétation en terme de particules sans masse se propageant librement. Enfin, nous avons montré que la dynamique asymptotique au niveau du point fixe s’apparente à celle d’une trempe d’un état symétrique dans la phase de symétrie brisée. Le troisième volet de cette thèse apporte des éléments nouveaux pour la compréhension du diagramme des phases du modèle de Bose-Hubbard en présence de désordre. Pour ce faire,nous avons utilisé et étendu la méthode de la cavité quantique en champ moyen de Ioffe et Mézard, qui doit être utilisée avec la méthode des répliques. De cette manière, il est possible d’obtenir des résultats analytiques pour les exposants des lois de probabilité de la susceptibilité.Nos résultats indiquent que dans les différents régimes de la transition de phase de superfluide vers isolant, les lois d’échelle conventionnelles sont tantôt applicables, tantôt remplacées par une loi d’activation. Enfin, les exposants critiques varient continûment à la transition conventionnelle. / The fast progress of cold atoms experiments in the last decade has allowed to explore new aspects of strongly correlated systems. This thesis deals with two such general themes: the out of equilibrium dynamics of closed quantum systems, and the impact of disorder on strongly correlated bosons at zero temperature. Among the different questions about out of equilibrium dynamics, the phenomenon of dynamical transition is still lacking a complete understanding. The transition is typically signalled, in mean-field, by a singular behaviour of observables as a function of the parameters of the quench. In this thesis, a mean field method is developed to give evidence of a strong link between the quantum phase transition at zero temperature and the dynamical transition. We then study using field theory techniques a relativistic O($N$) model, and show that the dynamical transition bears similarities with a critical phenomenon. In this context, the dynamical transition also appears to be formally related to the dynamics of symmetry breaking. The second part of this thesis is about the disordered Bose-Hubbard model and the nature of its phase transitions. We use and extend the cavity mean field method, introduced by Ioffe and Mezard to obtain analytical results from the quantum cavity method and the replica trick. We find that the conventional transition, with power law scaling, is changed into an activated scaling in some regions of the phase diagram. Furthermore, the critical exponents are continuously varying along the conventional transition. These intriguing properties call for further investigations using different methods.
4

Statistical physics of constraint satisfaction problems

Lamouchi, Elyes 10 1900 (has links)
La technique des répliques est une technique formidable prenant ses origines de la physique statistique, comme un moyen de calculer l'espérance du logarithme de la constante de normalisation d'une distribution de probabilité à haute dimension. Dans le jargon de physique, cette quantité est connue sous le nom de l’énergie libre, et toutes sortes de quantités utiles, telle que l’entropie, peuvent être obtenue de là par des dérivées. Cependant, ceci est un problème NP-difficile, qu’une bonne partie de statistique computationelle essaye de résoudre, et qui apparaît partout; de la théorie des codes, à la statistique en hautes dimensions, en passant par les problèmes de satisfaction de contraintes. Dans chaque cas, la méthode des répliques, et son extension par (Parisi et al., 1987), se sont prouvées fortes utiles pour illuminer quelques aspects concernant la corrélation des variables de la distribution de Gibbs et la nature fortement nonconvexe de son logarithme negatif. Algorithmiquement, il existe deux principales méthodologies adressant la difficulté de calcul que pose la constante de normalisation: a). Le point de vue statique: dans cette approche, on reformule le problème en tant que graphe dont les nœuds correspondent aux variables individuelles de la distribution de Gibbs, et dont les arêtes reflètent les dépendances entre celles-ci. Quand le graphe en question est localement un arbre, les procédures de message-passing sont garanties d’approximer arbitrairement bien les probabilités marginales de la distribution de Gibbs et de manière équivalente d'approximer la constante de normalisation. Les prédictions de la physique concernant la disparition des corrélations à longues portées se traduise donc, par le fait que le graphe soit localement un arbre, ainsi permettant l’utilisation des algorithmes locaux de passage de messages. Ceci va être le sujet du chapitre 4. b). Le point de vue dynamique: dans une direction orthogonale, on peut contourner le problème que pose le calcul de la constante de normalisation, en définissant une chaîne de Markov le long de laquelle, l’échantillonnage converge à celui selon la distribution de Gibbs, tel qu’après un certain nombre d’itérations (sous le nom de temps de relaxation), les échantillons sont garanties d’être approximativement générés selon elle. Afin de discuter des conditions dans lesquelles chacune de ces approches échoue, il est très utile d’être familier avec la méthode de replica symmetry breaking de Parisi. Cependant, les calculs nécessaires sont assez compliqués, et requièrent des notions qui sont typiquemment étrangères à ceux sans un entrainement en physique statistique. Ce mémoire a principalement deux objectifs : i) de fournir une introduction a la théorie des répliques, ses prédictions, et ses conséquences algorithmiques pour les problèmes de satisfaction de constraintes, et ii) de donner un survol des méthodes les plus récentes adressant la transition de phase, prédite par la méthode des répliques, dans le cas du problème k−SAT, à partir du point de vu statique et dynamique, et finir en proposant un nouvel algorithme qui prend en considération la transition de phase en question. / The replica trick is a powerful analytic technique originating from statistical physics as an attempt to compute the expectation of the logarithm of the normalization constant of a high dimensional probability distribution known as the Gibbs measure. In physics jargon this quantity is known as the free energy, and all kinds of useful quantities, such as the entropy, can be obtained from it using simple derivatives. The computation of this normalization constant is however an NP-hard problem that a large part of computational statistics attempts to deal with, and which shows up everywhere from coding theory, to high dimensional statistics, compressed sensing, protein folding analysis and constraint satisfaction problems. In each of these cases, the replica trick, and its extension by (Parisi et al., 1987), have proven incredibly successful at shedding light on keys aspects relating to the correlation structure of the Gibbs measure and the highly non-convex nature of − log(the Gibbs measure()). Algorithmic speaking, there exists two main methodologies addressing the intractability of the normalization constant: a) Statics: in this approach, one casts the system as a graphical model whose vertices represent individual variables, and whose edges reflect the dependencies between them. When the underlying graph is locally tree-like, local messagepassing procedures are guaranteed to yield near-exact marginal probabilities or equivalently compute Z. The physics predictions of vanishing long range correlation in the Gibbs measure, then translate into the associated graph being locally tree-like, hence permitting the use message passing procedures. This will be the focus of chapter 4. b) Dynamics: in an orthogonal direction, we can altogether bypass the issue of computing the normalization constant, by defining a Markov chain along which sampling converges to the Gibbs measure, such that after a number of iterations known as the relaxation-time, samples are guaranteed to be approximately sampled according to the Gibbs measure. To get into the conditions in which each of the two approaches is likely to fail (strong long range correlation, high energy barriers, etc..), it is very helpful to be familiar with the so-called replica symmetry breaking picture of Parisi. The computations involved are however quite involved, and come with a number of prescriptions and prerequisite notions (s.a. large deviation principles, saddle-point approximations) that are typically foreign to those without a statistical physics background. The purpose of this thesis is then twofold: i) to provide a self-contained introduction to replica theory, its predictions, and its algorithmic implications for constraint satisfaction problems, and ii) to give an account of state of the art methods in addressing the predicted phase transitions in the case of k−SAT, from both the statics and dynamics points of view, and propose a new algorithm takes takes these into consideration.

Page generated in 0.0712 seconds