• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenho animado e educação: calça quadrada, cabeça redonda? / Cartoon and education: square pants, round head?

Silva, Margarida Sônia Marinho do Monte 20 August 2010 (has links)
Made available in DSpace on 2015-05-07T15:09:59Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2561743 bytes, checksum: c1fad1cda34ed7a4d0fe6cc0b08477fe (MD5) Previous issue date: 2010-08-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The thesis presents an analysis of the relation between the contents transmitted by the SpongeBob animated series and the infantile subjectivity formation using the concepts of symbolic representation, internalization and resistance based on Piaget (1978) Vygotsky (2007) and Giroux (1986) respectively. In this investigation sixty-two children, between 03 and 05 years old, took part. They were students from the Basic Education School of the Federal University of Paraíba, enrolled in the morning and afternoon shifts in 2009. The ethnographic research used the direct observation, interviews with the students and dialogues in circle before and after they watched the SpongeBob series video. The data obtained and submitted to analyses indicate that the contents, of the mentioned cartoon, intervened in the subjectivity of the infantile spectators, between 03 and 04 years old, in a proportion higher than in those who were 05 years old. Such interference is demonstrated by the preference of being the main cartoon character, adopting standardized attitudes and behaviors. Nevertheless, this does not prevent the children from adding their own meaning to the cartoon s contents. The thesis still advocates that the school education has the potential to prepare the students as concerns educating them by means of the television media, specifically, the cartoons, through the dialogue and the critical analysis; procedures adopted by the critical pedagogy. We concluded that we should integrate to school the educational studies for the television media as both a pedagogical instrument and a study object so as to promote a critical behavior in the students in regard to the media. / A tese contém uma análise da relação entre os conteúdos transmitidos pelo desenho animado Bob Esponja e a formação da subjetividade infantil utilizando os conceitos de representação simbólica, internalização e resistência, baseados em Piaget (1978) Vygotsky (2007) e Giroux (1986), respectivamente. Nesta investigação, participaram 62 crianças de 03 a 05 anos, alunos da Escola de Educação Básica da Universidade Federal da Paraíba, matriculados nos turnos manhã e tarde em 2009. A pesquisa etnográfica utilizou a observação direta, entrevistas com os alunos e rodas de conversa antes e depois que os mesmos assistiram ao vídeo do desenho animado Bob Esponja. Os dados obtidos e submetidos a análise indicam que os conteúdos do referido desenho interferiram na subjetividade dos espectadores infantis de 03 e de 04 anos, em proporção maior do que naqueles de 05 anos. Esta interferência é demonstrada pela preferência em ser o personagem principal do desenho, adotando atitudes e comportamentos padronizados, no entanto, não os impedindo de acrescentar aos conteúdos do desenho animado um sentido próprio. A tese defende ainda que a educação escolar tem potencial para capacitar os alunos no sentido de educar para mídia televisiva, especificamente os desenhos animados, através do diálogo e análise crítica, procedimentos adotados pela pedagogia crítica. Concluímos que devemos integrar à escola os estudos de educação para a mídia televisiva, como instrumento pedagógico e como objeto de estudo para que se desenvolva nos alunos uma postura crítica diante dela.
2

Representação simbólica de séries temporais para reconhecimento de atividades humanas no smartphone / Symbolic representation of time series for human activity recognition using smartphone

Quispe, Kevin Gustavo Montero, 092981721829, https://orcid.org/0000-0002-0550-4748 14 August 2018 (has links)
Submitted by Kevin Quispe (kgmq@icomp.ufam.edu.br) on 2018-10-26T19:02:31Z No. of bitstreams: 1 dissertação-kevin-quispe-final.pdf: 2744401 bytes, checksum: cf4d3337afb0d9fa244abbd4ec3d1a5a (MD5) / Approved for entry into archive by Secretaria PPGI (secretariappgi@icomp.ufam.edu.br) on 2018-10-26T19:07:43Z (GMT) No. of bitstreams: 1 dissertação-kevin-quispe-final.pdf: 2744401 bytes, checksum: cf4d3337afb0d9fa244abbd4ec3d1a5a (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-10-26T19:15:25Z (GMT) No. of bitstreams: 1 dissertação-kevin-quispe-final.pdf: 2744401 bytes, checksum: cf4d3337afb0d9fa244abbd4ec3d1a5a (MD5) / Made available in DSpace on 2018-10-26T19:15:25Z (GMT). No. of bitstreams: 1 dissertação-kevin-quispe-final.pdf: 2744401 bytes, checksum: cf4d3337afb0d9fa244abbd4ec3d1a5a (MD5) Previous issue date: 2018-08-14 / Human activity recognition (RAH) through sensors embedded in wearable devices such as smartphones has allowed the development of solutions capable of monitoring human behavior. However, such solutions have presented limitations in terms of efficiency in the consumption of computational resources and generalization for different application or data domain configurations. These limitations are explored in this work in the feature extraction process, in which existing solutions use a manual approach to extract the characteristics of the sensor data. To overcome the problem, this work presents an automatic approach to feature extraction based on the symbolic representation of time series --- representation defined by sets of discrete symbols (words). In this context, this work presents an extension of the symbolic representation of the Bag-Of-SFA-Symbols (BOSS) method to handle the processing of multiple time series, reduce data dimensionality and generate compact and efficient classification models. The proposed method, called Multivariate Bag-Of-SFA-Symbols (MBOSS), is evaluated for the classification of physical activities from data of inertial sensors. Experiments are conducted in three public databases and for different experimental configurations. In addition, the efficiency of the method is evaluated in aspects such as computing time and data space. The results, in general, show an efficiency of classification equivalent to the solutions based on the traditional approach of manual extraction, highlighting the results obtained in the database with nine classes of activities (UniMib SHAR), where MBOSS obtained an accuracy of 99% and 87% for the custom and generalized template, respectively. The efficiency results of MBOSS demonstrate the low computational cost of the solution and show the feasibility of application in smartphones. / O reconhecimento de atividade humanas (RAH) por meio de sensores embutidos em dispositivos vestíveis como, por exemplo, smartphones tem permitido o desenvolvimento de soluções capazes de monitorar o comportamento humano. No entanto, tais soluções têm apresentado limitações em termos de eficiência no consumo dos recursos computacionais e na generalização para diferentes configurações de aplicação ou domínio de dados. Essas limitações são exploradas neste trabalho no processo de extração de características, na qual as soluções existentes utilizam uma abordagem manual para extrair as características dos dados de sensores. Para superar o problema, este trabalho apresenta uma abordagem automática de extração de características baseada na representação simbólica de séries temporais --- representação definida por conjuntos de símbolos discretos (palavras). Nesse contexto, este trabalho apresenta uma extensão do método de representação simbólica Bag-Of-SFA-Symbols (BOSS) para lidar com o processamento de múltiplas séries temporais, reduzir a dimensionalidade dos dados e gerar modelos de classificação compactos e eficiêntes. O método proposto, denominado Multivariate Bag-Of-SFA-Symbols (MBOSS), é avaliado para a classificação de atividades físicas a partir de dados de sensores inerciais. Experimentos são conduzidos em três bases de dados públicas e para diferentes configurações experimentais. Além disso, avalia-se a eficiência do método em aspectos como tempo de computação e espaço de dados. Os resultados, em geral, demostram uma eficácia de classificação equivalente as soluções baseadas na abordagem comun de extração manual de características, destacando os resultados obtidos na base de dados com nove classes de atividades (UniMib SHAR), onde o MBOSS obteve uma acurácia de 99% e 87% para o modelo personalizado e generalizado, respectivamente. Os resultados de eficiência do MBOSS demostram o baixo custo computacional da solução e mostram a viabilidade de aplicação em smartphones.
3

Ensemble de técnicas de representação simbólica para reconhecimento biométrico baseado em sinais de ECG / Ensemble of symbolic representation techniques for biometric recognition based on ECG signals

Passos, Henrique dos Santos 19 April 2018 (has links)
Métodos de identificação de pessoas sempre foram muito importantes para toda a sociedade. Atualmente, as pesquisas em biometria vêm sendo amplamente incentivadas por diversos setores da indústria mundial com o objetivo de melhorar ou substituir os atuais sistemas de segurança e de identificação de pessoas. O campo da biometria abarca uma grande variedade de tecnologias usadas para identificar e verificar a identidade de uma pessoa por meio da mensuração e análise de diversas características físicas e/ou comportamentais do ser humano. Diversas modalidades biométricas têm sido propostas para reconhecimento de pessoas, como impressão digital, íris, face e fala. Estas modalidades biométricas possuem características distintas em termos de desempenho, mensurabilidade e aceitabilidade. Uma questão a ser considerada com a aplicação biométrica é sua robustez a ataques por circunvenção, repetição e ofuscação. Esses ataques estão se tornando cada vez mais frequentes e questionamentos estão sendo levantados a respeito dos níveis de segurança das formas de reconhecimento. Sinais biomédicos como eletrocardiograma (ECG), eletroencefalograma (EEG) e eletromiograma (EMG) têm sido cada vez mais estudados e aplicados ao reconhecimento biométrico. Em específico, os sinais de ECG têm sido largamente adotados para o reconhecimento biométrico em diversos trabalhos. Por outro lado, análise de séries temporais tem sido usada com sucesso em muitas diferentes aplicações para identificar padrões temporais nos dados. Embora dinâmica simples possa ser observada com ferramentas analíticas tradicionais tais como transformada de fourier, transformada wavelet, a representação simbólica pode melhorar a análise de processos que são complexos e possivelmente caótico. Além disso, representação simbólica pode também reduzir a sensibilidade a ruído e melhorar bastante a eficiência computacional. No entanto, existem aspectos estruturais e paramétricos de projeto que podem conduzir a uma degradação de desempenho. Na ausência de uma metodologia sistemática e de baixo custo para a proposição de técnicas de representação simbólicas otimamente especificadas, os comitês de máquinas, mais especificamente ensemble, se apresentam como alternativas promissoras. Neste estudo, os componentes do ensemble, que correspondem as técnicas de representação simbólicas, e seus respectivos parâmetros foram selecionados via algoritmos evolutivos. O objetivo é explorar conjuntamente potencialidades advindas das técnicas de representação simbólicas e comitê de máquinas para reconhecimento biométrico baseado em sinais de ECG. Resultados experimentais conduzidos sobre dois conjuntos de dados disponíveis publicamente indicam que a abordagem proposta pode melhorar o desempenho do reconhecimento quando comparada com as técnicas tradicionais / Identification people methods have been very important for the whole society. Currently, research on biometrics have been widely encouraged by various sectors of the industry worldwide in order to improve or replace existing security systems and people identification. The field of biometrics includes a variety of technologies used to identify or verify the identity of a person by measuring and analyzing various physical and/or behavioral aspects of the human being. Several biometric methods have been proposed for recognition of people, such as fingerprint, iris, face and speech. These biometric modalities have different characteristics in terms of performance, measurability and acceptability. One issue to be considered with the biometric application in the real world is its robustness to attacks by circumvention, repetition and obfuscation. These attacks are becoming more frequent and more questions are being raised about the levels of security that this technology can offer. Biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG) and electromyogram (EMG) have been increasingly studied and applied to biometric recognition. Specifically, ECG signals have been widely adopted for biometric recognition in various works. On the other hand, time series analysis has been used successfully in many different applications to identify temporal patterns in the data. Although simple dynamics can be observed with traditional analytical tools such as fourier transform, wavelet transform, the symbolic representation can improve the analysis of processes that are complex and possibly chaotic. In addition, symbolic representation can also reduce noise sensitivity and greatly improve computational efficiency. However, there are structural and parametric design aspects that can lead to performance degradation. In the absence of a systematic and inexpensive methodology for proposing optimally specified symbolic representation techniques, machine committees, more specifically ensemble, present themselves as promising alternatives. In this study, the components of the committee, which correspond to techniques of symbolic representation, and their respective parameters were selected via evolutionary algorithms. The objective is to jointly explore the potentialities of both symbolic representation techniques and machine committee for biometric recognition based on ECG signals. Experimental results conducted on two publicly available datasets indicate that the proposed approach may improve recognition performance when compared to traditional techniques
4

Ensemble de técnicas de representação simbólica para reconhecimento biométrico baseado em sinais de ECG / Ensemble of symbolic representation techniques for biometric recognition based on ECG signals

Henrique dos Santos Passos 19 April 2018 (has links)
Métodos de identificação de pessoas sempre foram muito importantes para toda a sociedade. Atualmente, as pesquisas em biometria vêm sendo amplamente incentivadas por diversos setores da indústria mundial com o objetivo de melhorar ou substituir os atuais sistemas de segurança e de identificação de pessoas. O campo da biometria abarca uma grande variedade de tecnologias usadas para identificar e verificar a identidade de uma pessoa por meio da mensuração e análise de diversas características físicas e/ou comportamentais do ser humano. Diversas modalidades biométricas têm sido propostas para reconhecimento de pessoas, como impressão digital, íris, face e fala. Estas modalidades biométricas possuem características distintas em termos de desempenho, mensurabilidade e aceitabilidade. Uma questão a ser considerada com a aplicação biométrica é sua robustez a ataques por circunvenção, repetição e ofuscação. Esses ataques estão se tornando cada vez mais frequentes e questionamentos estão sendo levantados a respeito dos níveis de segurança das formas de reconhecimento. Sinais biomédicos como eletrocardiograma (ECG), eletroencefalograma (EEG) e eletromiograma (EMG) têm sido cada vez mais estudados e aplicados ao reconhecimento biométrico. Em específico, os sinais de ECG têm sido largamente adotados para o reconhecimento biométrico em diversos trabalhos. Por outro lado, análise de séries temporais tem sido usada com sucesso em muitas diferentes aplicações para identificar padrões temporais nos dados. Embora dinâmica simples possa ser observada com ferramentas analíticas tradicionais tais como transformada de fourier, transformada wavelet, a representação simbólica pode melhorar a análise de processos que são complexos e possivelmente caótico. Além disso, representação simbólica pode também reduzir a sensibilidade a ruído e melhorar bastante a eficiência computacional. No entanto, existem aspectos estruturais e paramétricos de projeto que podem conduzir a uma degradação de desempenho. Na ausência de uma metodologia sistemática e de baixo custo para a proposição de técnicas de representação simbólicas otimamente especificadas, os comitês de máquinas, mais especificamente ensemble, se apresentam como alternativas promissoras. Neste estudo, os componentes do ensemble, que correspondem as técnicas de representação simbólicas, e seus respectivos parâmetros foram selecionados via algoritmos evolutivos. O objetivo é explorar conjuntamente potencialidades advindas das técnicas de representação simbólicas e comitê de máquinas para reconhecimento biométrico baseado em sinais de ECG. Resultados experimentais conduzidos sobre dois conjuntos de dados disponíveis publicamente indicam que a abordagem proposta pode melhorar o desempenho do reconhecimento quando comparada com as técnicas tradicionais / Identification people methods have been very important for the whole society. Currently, research on biometrics have been widely encouraged by various sectors of the industry worldwide in order to improve or replace existing security systems and people identification. The field of biometrics includes a variety of technologies used to identify or verify the identity of a person by measuring and analyzing various physical and/or behavioral aspects of the human being. Several biometric methods have been proposed for recognition of people, such as fingerprint, iris, face and speech. These biometric modalities have different characteristics in terms of performance, measurability and acceptability. One issue to be considered with the biometric application in the real world is its robustness to attacks by circumvention, repetition and obfuscation. These attacks are becoming more frequent and more questions are being raised about the levels of security that this technology can offer. Biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG) and electromyogram (EMG) have been increasingly studied and applied to biometric recognition. Specifically, ECG signals have been widely adopted for biometric recognition in various works. On the other hand, time series analysis has been used successfully in many different applications to identify temporal patterns in the data. Although simple dynamics can be observed with traditional analytical tools such as fourier transform, wavelet transform, the symbolic representation can improve the analysis of processes that are complex and possibly chaotic. In addition, symbolic representation can also reduce noise sensitivity and greatly improve computational efficiency. However, there are structural and parametric design aspects that can lead to performance degradation. In the absence of a systematic and inexpensive methodology for proposing optimally specified symbolic representation techniques, machine committees, more specifically ensemble, present themselves as promising alternatives. In this study, the components of the committee, which correspond to techniques of symbolic representation, and their respective parameters were selected via evolutionary algorithms. The objective is to jointly explore the potentialities of both symbolic representation techniques and machine committee for biometric recognition based on ECG signals. Experimental results conducted on two publicly available datasets indicate that the proposed approach may improve recognition performance when compared to traditional techniques

Page generated in 0.0691 seconds