• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 19
  • 16
  • 12
  • 10
  • 8
  • 6
  • 2
  • 2
  • Tagged with
  • 221
  • 221
  • 76
  • 52
  • 39
  • 35
  • 33
  • 32
  • 31
  • 28
  • 24
  • 21
  • 21
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Categorical Actions on Supercategory O

Davidson, Nicholas 21 November 2016 (has links)
This dissertation uses techniques from the theory of categorical actions of Kac-Moody algebras to study the analog of the BGG category O for the queer Lie superalgebra. Chen recently reduced many questions about this category to its so-called types A, B, and C blocks. The type A blocks were completely described in joint work with Brundan in terms of the general linear Lie superalgebra. This dissertation proves that the type C blocks admit the structure of a tensor product categorification of the n-fold tensor power of the natural sp_\infty-module. Using this result, we relate the combinatorics for these blocks to Webster’s orthodox bases for the quantum group of type C_\infty, verifying the truth of a recent conjecture of Cheng-Kwon-Wang. This dissertation contains coauthored material.
62

On eigenvectors for semisimple elements in actions of algebraic groups

Kenneally, Darren John January 2010 (has links)
Let G be a simple simply connected algebraic group defined over an algebraically closed field K and V an irreducible module defined over K on which G acts. Let E denote the set of vectors in V which are eigenvectors for some non-central semisimple element of G and some eigenvalue in K*. We prove, with a short list of possible exceptions, that the dimension of Ē is strictly less than the dimension of V provided dim V > dim G + 2 and that there is equality otherwise. In particular, by considering only the eigenvalue 1, it follows that the closure of the union of fixed point spaces of non-central semisimple elements has dimension strictly less than the dimension of V provided dim V > dim G + 2, with a short list of possible exceptions. In the majority of cases we consider modules for which dim V > dim G + 2 where we perform an analysis of weights. In many of these cases we prove that, for any non-central semisimple element and any eigenvalue, the codimension of the eigenspace exceeds dim G. In more difficult cases, when dim V is only slightly larger than dim G + 2, we subdivide the analysis according to the type of the centraliser of the semisimple element. Here we prove for each type a slightly weaker inequality which still suffices to establish the main result. Finally, for the relatively few modules satisfying dim V ≤ dim G + 2, an immediate observation yields the result for dim V < dim B where B is a Borel subgroup of G, while in other cases we argue directly.
63

The Modern Representation Theory of the Symmetric Groups

Cioppa, Timothy January 2012 (has links)
The goal of this thesis is to first give an overview of the modern approach, using the paper of A. Vershik and A. Okounkov, to inductively parametrizing all irreducible representations of the symmetric groups. This theory is then used to answer questions concerning to central projections in the group algebra. We index units first by partitions, and then by so called standard tableaux. We also present a new result and discuss future research exploring the connections between this theory and Quantum Information.
64

Triples in Finite Groups and a Conjecture of Guralnick and Tiep

Lee, Hyereem, Lee, Hyereem January 2017 (has links)
In this thesis, we will see a way to use representation theory and the theory of linear algebraic groups to characterize certain family of finite groups. In Chapter 1, we see the history of preceding work. In particular, J. G. Thompson’s classification of minimal finite simple nonsolvable groups and characterization of solvable groups will be given. In Chapter 2, we will describe some background knowledge underlying this project and notation that will be widely used in this thesis. In Chapter 3, the main theorem originally conjectured by Guralnick and Tiep will be stated together with the base theorem which is a reduced version of main theorem to the case where we have a quasisimple group. Main theorem explains a way to characterize the finite groups with a composition factor of order divisible by two distinct primes p and q as the finite groups containing nontrivial 2-element x, p-element y, q-element z such that xyz = 1. In this thesis we more focus on the proof of showing a finite group G with a composition factor of order divisible by two distinct prime p and q contains nontrivial 2-element x, p-element y, q-element z such that xyz = 1. In Chapter 4, we will prove a set of lemmas and proposition which will be used as key tools in the proof of the base theorem. In Chapters 5 to 7, we will establish the base theorem in the cases where a quasisimple group G has its simple quotient isomorphic to alternating groups or sporadic groups (Chapter 5), classical groups (Chapter 6), and exceptional groups (Chapter 7). In Chapter 8, we show that any finite group G admitting nontrivial 2-element x, p- element y, q-element z such that xyz = 1 for two distinct odd primes p and q admits a composition factor of order divisible by pq. Also, we show that the question if a finite group G with a composition factor of order divisible by two distinct prime p and q contains nontrivial 2-element x, p-element y, q-element z such that xyz = 1 can be reduced to the base theorem.
65

Two Approaches to Clifford's Theorem

Miller, Shannon J. 06 May 2021 (has links)
No description available.
66

Affine Oriented Frobenius Brauer Categories and General Linear Lie Superalgebras

McSween, Alexandra 29 June 2021 (has links)
To any Frobenius superalgebra A we associate an oriented Frobenius Brauer category and an affine oriented Frobenius Brauer categeory. We define natural actions of these categories on categories of supermodules for general linear Lie superalgebras gl_m|n(A) with entries in A. These actions generalize those on module categories for general linear Lie superalgebras and queer Lie superalgebras, which correspond to the cases where A is the ground field and the two-dimensional Clifford superalgebra, respectively. We include background on monoidal supercategories and Frobenius superalgebras and discuss some possible further directions.
67

Combinatorial Problems Related to the Representation Theory of the Symmetric Group

Kreighbaum, Kevin M. 19 May 2010 (has links)
No description available.
68

Three-Dimensional Galois Representations and a Conjecture of Ash, Doud, and Pollack

Dang, Vinh Xuan 20 June 2011 (has links) (PDF)
In the 1970s and 1980s, Jean-Pierre Serre formulated a conjecture connecting two-dimensional Galois representations and modular forms. The conjecture came to be known as Serre's modularity conjecture. It was recently proved by Khare and Wintenberger in 2008. Serre's conjecture has various important consequences in number theory. Most notably, it played a key role in the proof of Fermat's last theorem. A natural question is, what is the analogue of Serre's conjecture for higher dimensional Galois representations? In 2002, Ash, Doud and Pollack formulated a precise statement for a higher dimensional analogue of Serre's conjecture. They also provided numerous computational examples as evidence for this generalized conjecture. We consider the three-dimensional version of the Ash-Doud-Pollack conjecture. We find specific examples of three-dimensional Galois representations and computationally verify the generalized conjecture in all these examples.
69

Frobenius Brauer Categories

Samchuck-Schnarch, Saima 16 August 2022 (has links)
Given a symmetric Frobenius superalgebra A equipped with a compatible involution, we define the associated Frobenius Brauer category B(A) and affine Frobenius Brauer category AB(A), generalizing the plain Brauer category B and affine Brauer category AB. We define the orthosymplectic Lie superalgebra osp m|2n(A) and a functor from B(A) to osp m|2n(A)-mod, the category of supermodules over osp m|2n(A). We also define a functor from AB(A) to the endofunctor supercategory of osp m|2n(A)-mod.We prove that these two functors are well-defined and use the former functor to prove a basis result for B(A, δ), a specialized version of B(A). Prior to defining these categories and functors, we provide the background information on super-mathematics and Frobenius superalgebras needed to understand the new results.
70

ON REPRESENTATION THEORY OF FINITE-DIMENSIONAL HOPF ALGEBRAS

Jacoby, Adam Michael January 2017 (has links)
Representation theory is a field of study within abstract algebra that originated around the turn of the 19th century in the work of Frobenius on representations of finite groups. More recently, Hopf algebras -- a class of algebras that includes group algebras, enveloping algebras of Lie algebras, and many other interesting algebras that are often referred to under the collective name of ``quantum groups'' -- have come to the fore. This dissertation will discuss generalizations of certain results from group representation theory to the setting of Hopf algebras. Specifically, our focus is on the following two areas: Frobenius divisibility and Kaplansky's sixth conjecture, and the adjoint representation and the Chevalley property. / Mathematics

Page generated in 0.0995 seconds