Spelling suggestions: "subject:"depresentation theory"" "subject:"prepresentation theory""
71 |
STUDIES ON SPATIAL SOIL HETEROGENEITY AND ITS INFLUENCE ON CROP RESPONSE TO FERTILIZER APPLICATION IN NORTHERN MALAWI / マラウイ北部における土壌の空間的異質性とそれが肥料施用への作物応答に及ぼす影響に関する研究NYENGERE Jabulani 23 May 2024 (has links)
京都大学 / 新制・課程博士 / 博士(地球環境学) / 甲第25518号 / 地環博第261号 / 新制||地環||54(附属図書館) / 京都大学大学院地球環境学舎地球環境学専攻 / (主査)准教授 真常 仁志, 教授 舟川 晋也, 教授 西前 出 / 学位規則第4条第1項該当 / Doctor of Global Environmental Studies / Kyoto University / DGAM
|
72 |
Dreieckverbande : lineare und quadratische darstellungstheorie / Triangle lattices : linear and quadratic representation theoryWild, Marcel Wolfgang 05 1900 (has links)
Prof. Marcel Wild completed his PhD with Zurick University and this is a copy of the original works / The original works can be found at http://www.hbz.uzh.ch/ / ABSTRACT: A linear representation of a modular lattice L is a homomorphism from L into the lattice Sub(V) of all subspaces of a vector space V. The representation theory of lattices was initiated by the Darmstadt school (Wille, Herrmann, Poguntke, et al), to large extent triggered by the linear representations of posets (Gabriel, Gelfand-Ponomarev, Nazarova, Roiter, Brenner, et al). Even though posets are more general than lattices, none of the two theories encompasses the other. In my thesis a natural type of finite lattice is identified, i.e. triangle lattices, and their linear representation theory is advanced. All of this was triggered by a more intricate setting of quadratic spaces (as opposed to mere vector spaces) and the question of how Witt’s Theorem on the congruence of finite-dimensional quadratic spaces lifts to spaces of uncountable dimensions. That issue is dealt with in the second half of the thesis.
|
73 |
Rees Products of Posets and InequalitiesBrown, Tricia Muldoon 01 January 2009 (has links)
In this dissertation we will look at properties of two different posets from different perspectives. The first poset is the Rees product of the face lattice of the n-cube with the chain. Specifically we study the Möbius function of this poset. Our proof techniques include straightforward enumeration and a bijection between a set of labeled augmented skew diagrams and barred signed permutations which label the maximal chains of this poset. Because the Rees product of this poset is Cohen-Macaulay, we find a basis for the top homology group and a representation of the top homology group over the symmetric group both indexed by the set of labeled augmented skew diagrams. We also show that the Möbius function of the Rees product of a graded poset with the t-ary tree and the Rees product of its dual with the t-ary tree coincide. We discuss labelings for Rees and Segre products in general, particularly the Rees product of the face lattice of a polytope with the chain. We also look at cases where the Möbius function of a poset is equal to the permanent of a matrix and we consider local h-vectors for the barycentric subdivision of the n-cube. In each section we state open conjectures. The second poset in this dissertation is the Dowling lattice. In particular we look at the k = 1 case, that is, the partition lattice. We study inequalities on the flag vector of the partition lattice via a weighted boustrophedon transform and determine a more generalized version for the Dowling lattice. We generalize a determinantal formula of Niven and conclude with conjectures and avenues of study.
|
74 |
Homogeneous Projective Varieties of Rank 2 GroupsLeclerc, Marc-Antoine 29 November 2012 (has links)
Root systems are a fundamental concept in the theory of Lie algebra. In this thesis, we will use two different kind of graphs to represent the group generated by reflections acting on the elements of the root system. The root
systems we are interested in are those of type A2, B2 and G2. After drawing the graphs, we will study the algebraic groups corresponding to those root systems. We will use three different techniques to give a geometric description of the homogeneous spaces G/P where G is the algebraic group corresponding to the root system and P is one of its parabolic subgroup. Finally, we will make a link between the graphs and the multiplication of
basis elements in the Chow group CH(G/P).
|
75 |
Simultaneous abstraction and semantic theoriesRuhrberg, Peter January 1996 (has links)
I present a simple Simultaneous Abstraction Calculus, where the familiar lambda-abstraction over single variables is replaced by abstraction over whole sets of them. Terms are applied to partial assignments of objects to variables. Variants of the system are investigated and compared, with respect to their semantic and proof theoretic properties. The system overcomes the strict ordering requirements of the standard lambda-calculus,and is shown to provide the kind of "non-selective" binding needed for Dynamic Montague Grammar and Discourse Representation Theory. It is closely related to a more complex system, due to Peter Aczel and Rachel Lunon, and can be used for Situation Theory in a similar way. I present versions of these theories within an axiomatic, property-theoretic framework, based on Aczels Frege Structures. The aim of this work is to provide the means for integrating various semantic theories within a formal framework,so that they can share what is common between them, and adopt from each other what is compatible with them.
|
76 |
Algoritmy v teorii reprezentací / Algorithms in Representation TheoryTrunkát, Marek January 2013 (has links)
This thesis deals with an implementation of algorithm for computation of generator of almost split sequences ending at an indecomposable nonprojective module of path algebra over finite quiver. Algorithm is implemented in algebra system GAP (Groups, Algorithms, Programming) with additional package QPA (Quivers and Path Algebras). Powered by TCPDF (www.tcpdf.org)
|
77 |
Frobenius categorification of cluster algebrasPressland, Matthew January 2015 (has links)
Cluster categories, introduced by Buan–Marsh–Reineke–Reiten–Todorov and later generalised by Amiot, are certain 2-Calabi–Yau triangulated categories that model the combinatorics of cluster algebras without frozen variables. When frozen variables do occur, it is natural to try to model the cluster combinatorics via a Frobenius category, with the indecomposable projective-injective objects corresponding to these special variables. Amiot–Iyama–Reiten show how Frobenius categories admitting (d-1)-cluster-tilting objects arise naturally from the data of a Noetherian bimodule d-Calabi–Yau algebra A and an idempotent e of A such that A/< e > is finite dimensional. In this work, we observe that this phenomenon still occurs under the weaker assumption that A and A^op are internally d-Calabi–Yau with respect to e; this new definition allows the d-Calabi–Yau property to fail in a way controlled by e. Under either set of assumptions, the algebra B=eAe is Iwanaga–Gorenstein, and eA is a cluster-tilting object in the Frobenius category GP(B) of Gorenstein projective B-modules. Geiß–Leclerc–Schröer define a class of cluster algebras that are, by construction, modelled by certain Frobenius subcategories Sub(Q_J) of module categories over preprojective algebras. Buan–Iyama–Reiten–Smith prove that the endomorphism algebra of a cluster-tilting object in one of these categories is a frozen Jacobian algebra. Following Keller–Reiten, we observe that such algebras are internally 3-Calabi–Yau with respect to the idempotent corresponding to the frozen vertices, thus obtaining a large class of examples of such algebras. Geiß–Leclerc–Schröer also attach, via an algebraic homogenization procedure, a second cluster algebra to each category Sub(Q_J), by adding more frozen variables. We describe how to compute the quiver of a seed in this cluster algebra via approximation theory in the category Sub(Q_J); our alternative construction has the advantage that arrows between the frozen vertices appear naturally. We write down a potential on this enlarged quiver, and conjecture that the resulting frozen Jacobian algebra A and its opposite are internally 3-Calabi–Yau. If true, the algebra may be realised as the endomorphism algebra of a cluster-tilting object in a Frobenius category GP(B) as above. We further conjecture that GP(B) is stably 2-Calabi–Yau, in which case it would provide a categorification of this second cluster algebra.
|
78 |
The projective parabolic geometry of Riemannian, Kähler and quaternion-Kähler metricsFrost, George January 2016 (has links)
We present a uniform framework generalising and extending the classical theories of projective differential geometry, c-projective geometry, and almost quaternionic geometry. Such geometries, which we call \emph{projective parabolic geometries}, are abelian parabolic geometries whose flat model is an R-space $G\cdot\mathfrak{p}$ in the infinitesimal isotropy representation $\mathbb{W}$ of a larger self-dual symmetric R-space $H\cdot\mathfrak{q}$. We also give a classification of projective parabolic geometries with $H\cdot\mathfrak{q}$ irreducible which, in addition to the aforementioned classical geometries, includes a geometry modelled on the Cayley plane $\mathbb{OP}^2$ and conformal geometries of various signatures. The larger R-space $H\cdot\mathfrak{q}$ severely restricts the Lie-algebraic structure of a projective parabolic geometry. In particular, by exploiting a Jordan algebra structure on $\mathbb{W}$, we obtain a $\mathbb{Z}^2$-grading on the Lie algebra of $H$ in which we have tight control over Lie brackets between various summands. This allows us to generalise known results from the classical theories. For example, which riemannian metrics are compatible with the underlying geometry is controlled by the first BGG operator associated to $\mathbb{W}$. In the final chapter, we describe projective parabolic geometries admitting a $2$-dimensional family of compatible metrics. This is the usual setting for the classical projective structures; we find that many results which hold in these settings carry over with little to no changes in the general case.
|
79 |
Universal D-modules, and factorisation structures on Hilbert schemes of pointsCliff, Emily Rose January 2015 (has links)
This thesis concerns the study of chiral algebras over schemes of arbitrary dimension n. In Chapter I, we construct a chiral algebra over each smooth variety X of dimension n. We do this via the Hilbert scheme of points of X, which we use to build a factorisation space over X. Linearising this space produces a factorisation algebra over X, and hence, by Koszul duality, the desired chiral algebra. We begin the chapter with an overview of the theory of factorisation and chiral algebras, before introducing our main constructions. We compute the chiral homology of our factorisation algebra, and show that the D-modules underlying the corresponding chiral algebras form a universal D-module of dimension n. In Chapter II, we discuss the theory of universal D-modules and OO- modules more generally. We show that universal modules are equivalent to sheaves on certain stacks of étale germs of n-dimensional varieties. Furthermore, we identify these stacks with the classifying stacks of groups of automorphisms of the n-dimensional disc, and hence obtain an equivalence between the categories of universal modules and the representation categories of these groups. We also define categories of convergent universal modules and study them from the perspectives of the stacks of étale germs and the representation theory of the automorphism groups.
|
80 |
Hjälten från väst? -En kvalitativ diskursanalys om hur volontären och mottagaren av arbetet framställs på svenska kommersiella volontärresebyråers hemsidorGara, Jacqueline January 2019 (has links)
The phenomenon of social work combined with traveling have become known for “voluntourism” and is a common way to travel today. This study investigates the external communication of the commercial volunteer abroad organizations that are offering projects that take place in the African continent. The study focuses on how the volunteer and the recipient of the social work is portrayed in the external communication. The study was conducted by using a critical discourse analysis inspired by Fairclough on four of Swedish commercial volunteer abroad organizations websites. By combining postcolonial perspective with othering as the theoretical framework, the results show that the western volunteer is centralized in the communication, while the recipients of the social work is portrayed homogeneously and objectified.
|
Page generated in 0.1428 seconds