• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 198
  • 123
  • 42
  • 24
  • 24
  • 6
  • 6
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 513
  • 251
  • 68
  • 67
  • 46
  • 45
  • 44
  • 42
  • 37
  • 34
  • 34
  • 33
  • 33
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Electrical Resistivity Imaging of Preferenital Flow through Surface Coal Mine Valley Fills with Comparison to Other Land Forms

Greer, Breeyn 20 April 2015 (has links)
Surface coal mining has caused significant land-use change in central Appalachia in the past few decades. This landscape altering process has been shown to degrade water quality and impact aquatic communities in the mining-influenced headwater streams of this biodiverse ecoregion. Among pollutants of concern is total dissolved solids (TDS) which is usually measured via its surrogate parameter, specific conductance (SC). The SC of valley fill effluent is a function of fill construction methods, materials, and age; yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of implementing traditional hydrologic measurements in fill material. We tested the effectiveness of electrical resistivity imaging (ERI) to monitor subsurface hydrologic flow paths in valley fills. ERI is a non-invasive geophysical inverse technique that maps spatiotemporal changes in resistivity of the subsurface. When a resistance or conductive change is induced in the system, ERI can reveal both geologic structure and hydrologic flows. We paired ERI with artificial rainfall experiments to track highly conductive infiltrated water as it moved through the valley fill. The subsurface structure of two other landforms were also imaged to confirm variations between forms. Results indicate that ERI can be used to identify the subsurface geologic structure as well as track the advancing wetting front and preferential flow paths. We observed that the upper portion of a fill develops a profile that more closely resembles soil with smaller particle sizes, while the deeper profile has higher heterogeneity, with large rocks and void spaces. The sprinkling experiments revealed that water tends to pond on the surface of compacted areas until it reaches preferential flowpaths, where it infiltrates quickly and migrates deeply or laterally. We observed water moving from the surface down to a 20 meters depth in one hour and 15 minutes, and to a depth of 10 meters in just 45 minutes. We also observed lateral preferential flow downslope within 5 meters of the surface, likely due to transmissive zones between compacted layers along the angle-of-repose. Finally, when compared to other landscapes we were able to see that a filled highwall slope has larger rocks near the surface than the valley fill, but a similar degree of heterogeneity throughout; while the natural slope has less heterogeneity at depth as is expected in consolidated bedrock. ERI applications can improve understanding of how various fill construction techniques influence subsurface water movement, and in turn aid in the development of valley fill construction methods that will reduce environmental impacts. / Master of Science
252

Evaluating Preferential Recharge in Blue Ridge Aquifer Systems Using Saline Tracers

Rugh, David F. 29 December 2006 (has links)
Multiple saline tracers were used to explore the role of geologic structure on groundwater recharge at the Fractured Rock Research Site in Floyd County, Virginia. Tracer migration was monitored through soil, saprolite, and fractured crystalline bedrock for a period of 3 months with chemical, physical, and geophysical techniques. Potassium chloride (KCl) and potassium bromide (KBr) tracers were applied at specific locations on the ground surface to directly test flow pathways in a shallow saprolite and deep fractured rock aquifer. Previous work at the Fractured Rock Research Site have identified an ancient thrust fault complex that is present in the otherwise competent metamorphic bedrock; fracturing along this fault plane has resulted in a highly transmissive aquifer that receives recharge along the vertically oriented portion of the fault zone. A shallow aquifer has been located above the thrust fault aquifer in a heterogeneous saprolite layer that rapidly transmits precipitation to a downgradient spring. Tracer monitoring was accomplished with differential electrical resistivity, chemical sampling, and physical monitoring of water levels and spring discharge. Tracer concentrations were monitored quantitatively with ion chromatography and qualitatively with differential resistivity surveys. KCl, applied at a concentration of 10,000 mg/L, traveled 160 meters downgradient through the thrust fault aquifer to a spring outlet in 24 days. KBr, applied at a concentration of 5,000 mg/L, traveled 90m downgradient through the saprolite aquifer in 19 days. KCl and KBr were present at the sampled springheads for 30 days and 33 days, respectively. Tracer breakthrough curves indicate diffuse flow through the saprolite aquifer and fracture flow through the crystalline thrust fault aquifer. Heterogeneities in the saprolite aquifer had a large effect on tracer transport, with breakthrough peaks varying several days over vertical distances of several meters. Monitoring saline tracer migration through soil, saprolite, and fractured rock provided data on groundwater recharge that would not have been available using other traditional hydrologic methods. Travel times and flowpaths observed during this study support preferential groundwater recharge controlled by geologic structure. Geologic structure, which is not currently considered an important factor in current models of Blue Ridge hydrogeology, should be evaluated on a local or regional scale for any water resources investigation, wellhead protection plan, or groundwater remediation project. / Master of Science
253

Test Method for Volume-resistivity Measurements on High Voltage Cables

Althini, Ruben, Larsson, Emil January 2024 (has links)
Introduction. A part of the standard testing procedure on high voltage cables is the measuring of the volume resistivity in the different semi-conductive layers. A need for improvement has been realized because of the increased frequency of testing, which is a result of the recent expansion of cable production of NKT in Karlskrona. Objective. The objectives of the thesis are to firstly discover what the needs are for improvements within the method of conducting volume resistivity measurements on high voltage cables. Secondly, following these discoveries, solving the problems by developing new products. Method. The method for the thesis work is divided into two parts, performing a case study on the current measurement method, and product development for the new solutions. The case study was conducted mainly by gathering empirical data through interviews and observations. The product development process started with ideation for solutions, followed by prototyping, and lastly, a validation process to test the new solutions through experiments and lead used testing. The entirety of the work was conducted through a design thinking approach. Result. From the case study it was discovered that two main issues needed to be addressed, being a new solution for a measurement rig, and a way to streamline the painting and taping process. A new design for a measurement rig was invented. The new solution contains two rigs, which allows for more samples to be heated simultaneously, halving the preheating time when testing four samples from the current measurement method. A preparation station was also created to aid the operators with the taping and painting, which resulted in a 40% reduced time for these tasks. Conclusion. By implementing new products, the measurement method for conducting volume resistivity has been improved by time effectiveness, robustness, and reliability.
254

Monitoring damage of concrete beams via self-sensing cement mortar coating with carbon nanotube-nano carbon black composite fillers

Qiu, L., Li, L., Ashour, Ashraf, Ding, S., Han, B. 26 July 2024 (has links)
Yes / Self-sensing concrete used in coating form for structural health monitoring of concrete structures has the merits of cost-effectiveness, offering protective effect on structural components, enabling electrical measurements unaffected by steel reinforcement and is also convenient to maintain and replace. This paper investigates the feasibility of using self-sensing cement mortar coating containing carbon nanotube-nano carbon black (CNT-NCB) composite fillers (CNCFs) for damage monitoring of concrete beams. The self-sensing cement mortar coated to concrete beams demonstrated outstanding electrical conductivity (resistivity ranging from 18 to 85 Ω·cm). Under monotonic flexural loadings, self-sensing cement mortar coating with 1.8 vol.% CNCFs featured sensitive self-sensing performance in terms of capturing the initiation of vertical cracks at pure bending span of concrete beams, with fractional change in resistivity (FCR) reaching up to 60.6%. Moreover, FCR variations of self-sensing cement mortar coating exhibited good synchronization and stability with the variation of mid-span deflections of concrete beams during cyclic flexural loadings irrespective of the contents of CNCFs and cyclic amplitudes. Remarkably, it was found that FCR of cement mortar coating basically showed a progressive upward tendency, representing irreversible increase in the resistance during cyclic loading. The irreversible residual FCR indicated the crack occurrence and damage accumulation of concrete beams. / National Science Foundation of China (52368031, 51978127 and 52178188) and the China Postdoctoral Science Foundation (2022M710973)
255

System Design, Fabrication, and Characterization of Thermoelectric and Thermal Interface Materials for Thermoelectric Devices

Wang, Jue 13 June 2018 (has links)
Thermoelectric devices are useful for a variety of applications due to their ability to either convert heat directly into electricity, or to generate a temperature gradient from an electric current. These devices offer several attractive features including compact size, no moving parts, limited maintenance requirements, and high reliability. Thus thermoelectric devices are used for temperature-control, cooling, or power generation in various industrial systems such as automobiles, avionics, refrigerators, chillers, laser diodes, dehumidifiers, and a variety of sensors. In order to improve the efficiency of thermoelectric devices, many endeavors have been made to design and fabricate materials with a higher dimensionless thermoelectric figure of merit (ZT), as well as to optimize the device structure and packaging to manage heat more effectively. When evaluating candidate thermoelectric materials, one must accurately characterize the electrical conductivity, thermal conductivity, and the Seebeck coefficient over the temperature range of potential use. However, despite considerable research on thermoelectric materials for decades, there is still significant scatter and disagreement in the literature regarding accurate characterization of these properties due to inherent difficulties in the measurements such as requirements for precise control of temperature, simultaneous evaluation of voltage and temperature, etc. Thus, a well-designed and well-calibrated thermoelectric measurement system that can meet the requirements needed for multiple kinds of thermoelectric materials is an essential tool for the development of advanced thermoelectric devices. In this dissertation, I discuss the design, fabrication, and validation of a measurement system that can rapidly and accurately evaluate the Seebeck coefficient and electrical resistivity of thermoelectric materials of various shapes and sizes from room temperature up to 600 K. The methodology for the Seebeck coefficient and electrical resistivity measurements is examined along with the optimization and application of both in the measurement system. The calibration process is completed by a standard thermoelectric material and several other materials, which demonstrates the accuracy and reliability of the system. While a great deal of prior research has focused on low temperature thermoelectric materials for cooling, such as Bi2Te3, high temperature thermoelectric materials are receiving increasing attention for power generation. With the addition of commercial systems for the Seebeck coefficient, electrical resistivity, and thermal conductivity measurements to expand the temperature range for evaluation, a wide range of materials can be studied and characterized. Chapter Two of this dissertation describes the physical properties characterization of a variety of thermoelectric materials, including room temperature materials such as Bi0.5Sb1.5Te3, medium temperature level materials such as skutterudites, and materials for high temperature applications such as half-Heusler alloys. In addition, I discuss the characterization of unique oxide thermoelectric materials, which are Al doped ZnO and Ca-Co-O systems for high temperature applications. Chapter Four of this dissertation addresses the use of GaSn alloys as a thermal interface material (TIM), to improve thermal transport between thermoelectric devices and heat sinks for power generation applications at high temperature. I discuss the mechanical and thermal behavior of GaSn as an interface material between electrically insulating AlN and Inconel heat exchangers at temperatures up to 600 °C. Additionally, a theoretical model for the experimental thermal performances of the GaSn interface layer is also examined. / Ph. D. / Thermoelectric materials can directly convert heat into electricity for power generation, or they can be used for cooling or refrigeration applications when supplied with electric power. This dissertation primarily focuses on the evaluation of materials used in thermoelectric generators (TEGs). Specifically, Chapter Two of this work describes the design, development, and validation of a developed measurement system that can evaluate two important properties, the Seebeck coefficient and electrical resistivity, for a variety of thermoelectric materials. Next, Chapter Three discusses the work using other commercial measurement systems to evaluate several types of thermoelectric materials, including Bi2Te3 based materials, skutterudites, half-Heusler alloys, ZnO, and Ca-Co-O for a TEG module. Finally, I discuss the use of GaSn, a liquid metal alloy, as a thermal interface material to improve heat transport between dissimilar materials for TEGs. The GaSn was applied between a thermoelectric device and a heat exchanger for use in energy harvesting devices. The mechanical robustness and thermal reliability were tested, and the GaSn was shown to improve thermal performances both in experiments and through modeling.
256

Using Electrical Resistivity Imaging to Relate Surface Coal Mining Valley Fill Characteristics to Effluent Stream Quality

Little, Kathryn Leigh 04 April 2018 (has links)
Surface coal mining has altered Appalachian landscapes, affecting water quality and aquatic ecology. Valley fills created from excess overburden are prominent features of many mined landscapes. Increased total dissolved solids (TDS), as measured by its surrogate specific conductance (SC), is a significant water quality concern related to the exposure of fresh mineral surfaces to weathering in valley fills. Specific conductance levels in waters draining Appalachian mined areas are highly variable, yet the causes for this variability are not well known. Here we sought to improve understanding of such variability by investigating the interior subsurface structure and hydrologic flowpaths within a series of valley fills and relating that to valley fill characteristics such as age and construction method. We used electrical resistivity imaging (ERI) to investigate the subsurface structure of four valley fills in two dimensions. We combined ERI with artificial rainfall to investigate the location and transit time of hydrologic preferential infiltration flowpaths through the fills. Finally, we used our ERI results in conjunction with SC data from effluent streams to improve understanding of SC relationship to fill flowpaths and characteristics. ERI results indicated considerable variability in substrate type and widespread presence of preferential infiltration flowpaths among the valley fills studied. We estimated an average preferential flowpath length of 6.6 meters, average transit time of 1.4 hours, and average velocity of 5.1 m/h or 0.14 cm/s through preferential infiltration flowpaths. ERI successfully distinguished fills constructed using methods of conventional loose-dump and experimental controlled-material compacted-lift construction. Conventional fills had greater ranges of subsurface resistivity, indicating a wider range of substrate types and/or more variable moisture content. Conventional fills also showed more accumulation of water within the fill during artificial rainfall, possibly indicating more quick/deep preferential infiltration flowpaths than in the experimental fill. Relationships between other fill characteristics as well as stream effluent SC were not related in a statistically significant way to fill structure or flowpaths. ERI appears to be a robust non-invasive technique that provides reliable information on valley fill structure and hydrology, and experimental compacted-lift valley fill construction produces significantly altered hydrologic response, which in turn affects downstream SC. / MS / Surface coal mining has altered Appalachian landscapes, affecting water quality and aquatic ecology. Valley fills created from excess mine spoil are prominent features of many mined landscapes. The streams draining valley fills often have very poor water quality, including high levels of increased total dissolved solids (TDS) related to weathering of mine spoils within valley fills. In this work, we investigated the subsurface structure of a series of valley fills and identified preferential hydrologic flowpaths, which are the “paths of least resistance” water follows for rapid infiltration. We related our results to various valley fill characteristics such as age and construction method. We found that the subsurface of a conventionally built fill tends to have more variation in material and/or moisture content than a fill built with an experimental construction method. Conventional fills also showed more accumulation of water within the fill during artificial rainfall experiments, possibly indicating more quick/deep preferential infiltration flowpaths than in the experimental fill.
257

Probing Magnetic And Structural Properties Of Metallic Nanowires Using Resistivity Noise

Singh, Amrita 09 1900 (has links) (PDF)
The main focus of this thesis work has been the study of domain wall (DW) dynamics in disordered cylindrical nanomagnets. The study attempts to accurately quantify the stochasticity associated with driven (temperature/magnetic field/spin-torque) DW kinetics. Our results as summarized below, are particularly relevant with regard to the technological advancement of DW based magnetoelectronic devices. 1. Temperature dependent noise measurements showed an exponential increase in noise mag-nitude, which was explained in terms of thermally activated DW depinning within the Neel-Brown framework. The frequency-dependence of noise also indicated a crossover from nondiffusive kinetics to long-range diffusion of DWs at higher temperatures. We also observed strong collective depinning, which must be considered when implementing these nanowires in magnetoelectronic devices. 2. Our noise measurements were sensitive enough to detect not only the stochasticity in DW propagation (diffusive random walk) but also their nucleation in the presence of magnetic field down to a single DW unit inside an isolated single Ni nanowire. Controlled injection and detection of individual DWs is critical in designing DW based memory devices. 3. The spectral slope of noise was observed to be sensitive to DWkinetics that reveals a creep-like behavior of the DWs at the depinning threshold, and diffusive DW motion at higher spin torque drive. Different regimes of DW kinetics were characterized by universal kinetic exponents. Noise measurements also revealed that the critical current density and DW pinning energy can be significantly reduced in a magnetically coupled vertical ensemble of nanowires. This was attributed to strong dipolar interaction between the nanowires. Our results are particularly important in view of recent proposals for low power consumption magnetic storage devices that rely on DW motion. In all our experiments, the critical magnetic field/current density, required to set the DWs in duffusive kinetics, were found to be much smaller than the reported values for nanostrips. This could be attributed to the circular cross section of nanowires, where massless DWs results in the absence of Walker breakdown and hence in zero critical current density. At present the contribution from the non-adiabaticity, which acts as an effective field and can reduce the crit- ical current density, can not be denied. The main di±culty in quantifying the non-adiabatic spin-torque is that not only does it contain contributions due to non-adiabatic transport but also due to spin-relaxation provided by magnetic impurities or the sources for spin-orbit scattering. Fortunately, in cylindrical nanomagnet, non-adiabaticity does not affect the DW motion. There- fore, cylindrical NWs may be promising candidate for future magnetic storage devices. However, a systematic experimental study of DW dynamics in cylindrical nanomagnets is lacking. In chapter 7, silver nanowires (AgNWs) are shown to be stabilized in fcc or hcp crystal structure, depending on the electrochemical growth conditions. The AgNWs stabilized in hcp crystal structure are shown to exhibit exotic structural properties i.e. ultra low noise level, thermally driven unconventional structural phase transformation, and time dependent structural relaxation. Ultra noise level makes hcp AgNWs suitable for application in nanoelectronics and the structural transformation may be exploited for use in smart materials. Though time resolved transmission electron microscopy and noise measurements provide some understanding of the hcp AgNWs formation, the precise growth mechanism is still not clear. Future scope of the work The results in this thesis provide the groundwork for a good understanding of stochastic DW kinetics in isolated as well as ensemble of magnetic nanocylinders. Some extensions to this work that would help expand and strengthen the results, are listed below; 1. In all the nanocylinders used for our experiments the source of stochasticity in DWkinetics were randomly distributed structural defects. For a controlled injection and detection of DWs between the voltage probes, it would be of great importance to fabricate artificial notches (pinning centers) in the NW. These notches can be fabricated either by using nano-indentation or by a focussed ion beam. 2. To investigate whether DWs in different parts of the nanowire exhibit spatio-temporal correlation, a simultaneous detection of DWkinetics (through noise measurement) between different volage probes needs to be done. If the propagation time of DWs scales with the distance between the voltage probes, we can be confident of our velocity measurement. Then, by recording the DWvelocity as function of eld/current for nanowire (or nanostrip) absence (or presence) of the Walker breakdown can be probed. This would be a significant result for future spintronic devices. With an accurate determination of velocity even non- adiabaticity parameter may be calculated and one can see its effect on DW dynamics. 3. A complete understanding of sustained avalanches at finite magnetic fields, characterized by a high spectral exponent (a>¸ 2:5) in an ensemble of nanowires is still lacking. Per- forming a controlled experiment on a single nanowire, by varying the number of nanowires in the alumina matrix, one can study the chaotic dynamics of DWs in the ensemble in very accurate manner. All the experiments on AgNWs were performed on ensembles. The large change in a as well as noise magnitude in hcp AgNWs could arise from stress relaxation due to the presence of an insulating matrix or structural relaxation, determined by the nanowire growth kinetics. To resolve this issue, time and temperature dependent noise measurements should be performed on single nanowire stabilized in both hcp and fcc crystal structure.
258

Field Investigations And Modeling of Flow in Vadose Zone in a Forested Watershed

Parate, Harshad Rameshwar January 2016 (has links) (PDF)
The vadose zone is the unsaturated zone between the ground surface and water table. This zone is of much importance as it acts as a link between surface water and ground water. Knowledge of soil moisture in this zone is very much essential to understand the meteorologic, hydrologic and agronomic process. Flow and transport in the unsaturated zone are more complex compared to saturated medium, as the pores in unsaturated zone are partly filled by air and partly by water. Most of vadose zone studies are done on agricultural plots where anthropogenic activities govern the vadose zone flows. Vadose zone studies in natural pristine conditions such as in forested areas where no anthropogenic activities are present are very limited that too in Indian conditions are rare. The present research work deals with understanding of the flow behavior in the vadose zone in a small experimental forested watershed called Mule Hole. Mule Hole watershed is 4.5 km2 and located in Bandipur National Park in Chamrajnagar District of Karnataka state, in the southern part of India. The forest is of deciduous type with 3 to 4 months of leafless dry period. The watershed has mean annual 25 years rainfall of 1120 mm and mean yearly temperature is 27o. The rainfall pattern is bimodal i.e. it receives rainfall during South West Monsoon (June -September) and North East Monsoon (October – December) with dominant rainfall occurring during South West Monsoon. Human activity is minimal as watershed is a part of Bandipur National Park, dedicated to wildlife and biodiversity preservation. The watershed consists of around 80 % of red soils, and black soil and saprolite covering the rest. The first part of the study involves soil moisture measurements by neutron probe and electrical resistivity measurements by geophysical method and their linking, i.e. developing volumetric soil moisture vs electrical resistivity relationship. The second part of the study involves application of neutron probe soil moisture measurement in identifying relationship between soil and erosion in the watershed. The third part involves development of two dimensional (2D) vadose zone model for watershed and validating it with measured data. The last part involves development of three dimensional model of watershed and validating it with observed data. Vadose zone is briefly described in chapter 1 along with its governing equations. Different soil moisture measurement techniques including invasive and non – invasive ones are also discussed. Different vadose zone modeling software which are public domain as well as commercial ones are also discussed. The chapter ends with organization of this thesis. Chapter 2 reviews relevant literature related to this study with focus on soil moisture measurement techniques and vadose zone flow modeling. Different soil moisture measurement techniques, their applications and limitations are reviewed. In the soil moisture measurement techniques, invasive and non – invasive types are reviewed. In the modeling part, different vadose zone models for 2D and 3D flow along with its applications and limitations are reviewed. Also a brief review about application of HYDRUS 2D/3D model is done which is used for the vadose zone modeling in this thesis. Chapter 3 introduces study area Mule Hole watershed, which is a forested watershed located in Bandipur National Park, Karnataka. India. The watershed has mean annual 25 years rainfall of 1120 mm and mean yearly temperature is 27o. The watershed has average regolith thickness or vadose zone of 17 m with roots of the trees able to penetrate up to groundwater. A toposequence T1 is identified in the watershed which has red soil – black soil confluence where soil moisture measurements and electrical resistivity measurements are carried out. The toposequence consists of 8 layers with organic layer forming the top layer followed by 3 red soil layer with 2 black soil layers intruding from stream into red soil layers and sandy weathered horizon at base of red and black soil. Also a sandy horizon at the top of black soil. Soil moisture measurements with neutron probe and electrical resistivity measurements with electrical logging tool which are done on toposequence periodically for two years are explained and the data are presented in this chapter. These data are used for validation of vadose zone models. Chapter 4 discusses in detail about comparison of electrical resistivity by geophysical method and neutron probe logging for soil moisture monitoring in a forested watershed. The electrical resistivity data and soil moisture data are compared for different soils and existence of relationship between them are studied and discussed in this chapter. For the red soil, existence of relationship between volumetric soil moisture content and electrical resistivity is found. Chapter 5 discusses soil moisture measurements as a tool to study erosion processes in forested watershed. Hydrodynamic behavior of the red soil – black soil system at toposequence T1 is studied using neutron probe soil moisture measurements. Two distinctive types of erosional landforms have been identified at T1 viz, rotational slips (Type 1); seepage erosion (Type 2),which are highlighted by neutron probe soil moisture measurements. Based on the observations relative chronology of formulation of different soil horizons are studied, which guided in developing four-stage model showing the relative chronology in the recent formation of the soil cover at downslope. Chapter 6 discusses application of 2D vadose zone modeling using HYDRUS – 2D model at two experimental sites in forested watershed where soil moisture monitoring and groundwater monitoring have been conducted. At the first site, which is toposequence T1 in the forested watershed, where soil moisture measurements are done, three case studies for comparison of daily scale data with hourly scale data and effects of internal layering by clubbing red soil layers and black soil layers to equivalent red soil and black soil layers respectively are performed. The model is run for two years. In that, first year results are used for calibrating the model where measured soil moisture content data are used to get soil hydraulic parameters for all the three cases by inverse modeling using Marquardt – Levenberg algorithm which is a part of HYDRUS 2D. The parameters thus obtained fall under particular soil range and performed efficiently in predicting soil moisture content. The second year results of model run is used for validation of the model in all the three cases where simulated soil moisture content is compared with measured soil moisture content. It is found that model is performing well and match between measured and simulated soil moisture contents is good in all the three cases. It can be said that having hourly scale data with detailed layering information is always advantageous in modeling soil moisture content. But, in absence of hourly scale data or finer scale data and absence of detailed layering information, the soil moisture model can also perform well. The scale of data and detailed layering information has minimal effect on soil moisture modeling. At the second site ERT profile near the watershed outlet has five monitoring wells are available and all layering information regarding regolith and hard rock layer distribution profiles. The soil hydraulic parameters obtained at toposequence T1 for soil and sandy weathered horizon are used and tested at this site to simulate the groundwater levels. The parameter for rock layer is estimated by testing different hydraulic parameters from HYDRUS database. The results are validated using observed groundwater levels at the site. The results show significant match between observed and simulated groundwater levels. Chapter 7 discusses 3D modeling of Mule Hole forested watershed using HYDRUS – 3D model. A three layer model of Mule Hole along with its topographic details is modeled. The layering information is derived from geophysical study done at 12 Electrical Resistivity Tomography (ERT) profiles distributed in the watershed. The three layers considered are top soil layer followed by sandy weathered layer and bottom rock layer. Anisotropy in hydraulic conductivity, root water uptake and sloping water table are introduced to make the model more realistic. Soil hydraulic parameters obtained during 2D vadose zone modeling of toposequence T1 are used initially for soil and sandy weathered layers and are subsequently tuned to make model more efficient. Different scenarios are considered to test flux as well as constant head boundary conditions and effect of different porosities for rock layer. The model is run for 7 years and model simulations are validated with observed groundwater levels from monitoring wells across the watershed. The result shows good fit between simulated and observed groundwater levels especially for monitoring well which has shallow groundwater level. It is found that porosity in the rock layer is not uniform and there exist different porosities for the rock layer across the watershed. Also the distribution of sandy weathered zone requires improvement. The model is also able to predict ET closer to ET predicted by COMFORT model which was developed earlier. Also the model shows rise in groundwater fluxes as groundwater starts replenishing. Over all, the 3D model of Mule Hole watershed in HYDRUS – 3D worked well with satisfactory results and HYDRUS – 3D can be used for modeling small forested watersheds. Chapter 8 concludes the study and discusses the further scope of the work.
259

Vliv tepelného namáhání na vnitřní a povrchový odpor polymerních materiálů / Influence of thermal stress on volume and surface resistance of material

Rohel, Tomáš January 2008 (has links)
This document describes the methods to test and measure the protective glasses used in solar panels. The next part of the dissertation covers the evolve summary for the norms of degradation tests. The purpose of this research is to scale the volume and surface electric resistivity of selected materials, as well as, specify the supposed durability of these materials. Evaluation of these features proceeds after enhanced aging by the use of dry heat. Samples of these materials were prepared with the cooperation of the company Solartec s.r.o
260

Caractérisation des discontinuités dans des ouvrages massifs en béton par la diagraphie électrique de résistivité

Taillet, Elodie January 2014 (has links)
Résumé : Le vieillissement des ouvrages en béton est une préoccupation majeure affectant la pérennité et l’efficacité des structures. Le maître d’ouvrage se doit de maintenir les fonctions d’usage de la structure tout en gardant une gestion économique efficace. L’objectif final de ces travaux de recherche est, donc de pouvoir renseigner sur l’état global de fissuration de la structure afin d’aider le maître d’ouvrage à respecter ses engagements. Dans cette optique, cette thèse développe une nouvelle technique aidant à la quantification de l’état des ouvrages massifs en béton. Elle s’appuie, pour cela, sur la méthode non-destructive de résistivité électrique en surface, connue pour sa sensibilité face à des facteurs révélateurs d’une altération. Toutefois, à cause de sa dépendance entre la profondeur d’investigation et la résolution, la méthode ne peut pas garantir de l’état global d’un ouvrage. De ce fait, il a été décidé d’utiliser la résistivité électrique via des forages préexistants dans la structure (diagraphie électrique). L’outil utilisé est une sonde en dispositif normal réservée jusqu’à présent pour la prospection pétrolière et hydrogéologique. En plus d’une prospection en profondeur via le forage, cette sonde peut acquérir des informations sur un rayon de 3.2m autour du forage. Cependant, à mesure que le volume de béton sondé augmente, la résolution décroit. La difficulté est donc de pouvoir exploiter les capacités de prospection de la sonde tout en sachant que la résolution faillit. Il s’agit de contourner le problème en maîtrisant les concepts de la diagraphie et son nouveau milieu d’application. Cette thèse est basée sur une première approche numérique permettant d’apporter des corrections sur les données de terrain et de déterminer la sensibilité de l’outil face à de l’endommagement d’ouverture plurimillimétrique à centimétrique. Ceci est validé par des mesures réalisées sur une écluse de la Voie Maritime du Saint-Laurent. Une étude numérique de la réponse de l’outil en fonction des paramètres de fissure tels que l’ouverture, le contraste entre la résistivité de la discontinuité et du béton, et l’extension est réalisée. Elle permet de construire une base de données afin de développer une méthode pour la caractérisation de l’endommagement. Cette méthode s’appuie sur ces réponses diagraphiques pour retrouver les paramètres de fissure recherchés (problème inverse). Nous procédons tout d’abord par une analyse préliminaire se basant sur un croisement des informations apportées par les différentes électrodes de la sonde puis nous optimisons les résultats par la méthode de recuit simulé. La méthode, ainsi développée est ensuite appliquée à un deuxième ouvrage pour en déterminer l’état interne. Ces travaux détectent plusieurs zones endommagées et caractérisent l’une d’elles par une ouverture centimétrique et une extension comprise entre 1.6m et 3.2m. Ces travaux prometteurs, attestent d’un premier diagnostic interne des ouvrages massifs en béton, un enjeu qui restait sans réponses satisfaisantes jusqu’à maintenant. // Abstract : The aging of concrete structures is a major problem affecting their sustainability and their efficiency. The owner must maintain the structure serviceability and provide cost-effective management. The goal of this work is to provide detailed information about the state of cracking inside the structure in order to assist the owner to meet its commitments. In this context, this thesis develops a new technology to assess the condition of mass concrete structures. It relies on a non-destructive method based on electrical resistivity measured from surface, known for its sensitivity to factors associated with concrete deterioration. However, because of its dependence between the investigation depth and the resolution, the method cannot assess the overall state of a structure. Therefore, it was decided to use the electrical resistivity through preexisting boreholes in the structure (electrical logging). The tool used is a normal probe, which has been traditionally used for oil and hydrogeological exploration. In addition to the investigation in depth via boreholes, this probe can get information over a radius of 3.2m around the borehole. However, as the probing volume of concrete increases, the resolution decreases. Difficulty is to use the exploration abilities of the tool, knowing that the resolution is limited. This is to get around the problem by mastering logging concepts and its new application environment. This thesis is based on a first numerical approach to make corrections on field data and to determine the tool sensitivity with regard to the multi-millimeter and centimeter crack size damage. This was validated with measurements made on a full-size lock located on the St. Lawrence Seaway. A numerical study of the tool response versus the discontinuities parameters such as the crack aperture, the resistivity contrast between the discontinuity and the concrete, and the extension was done. It allowed building a database used to develop a method for the characterization of the damage. This method is based on the tool responses to find the crack parameters (inverse problem). First, we proceed with a preliminary analysis based on a cross of information provided by the different electrodes of the probe then we optimize the results by the method of simulated annealing. The characterization method is applied to another structure to quantify its internal state. These studies detect several damaged areas and characterize one of them by a centimeter aperture and an extension between 1.6m and 3.2m. This work attest to a first internal diagnosis of massive concrete structures, an issue that remained without satisfactory answers so far.

Page generated in 0.1289 seconds