Spelling suggestions: "subject:"resonanzenergietransfer"" "subject:"resonanzenergietransfers""
31 |
Mapping the Conformational Dynamics of E-selectin upon Interaction with its LigandsAleisa, Fajr A 15 May 2013 (has links)
Selectins are key adhesion molecules responsible for initiating a multistep process that leads a cell out of the blood circulation and into a tissue or organ. The adhesion of cells (expressing ligands) to the endothelium (expressing the selectin i.e.,E-selectin)
occurs through spatio-temporally regulated interactions that are mediated by multiple intra- and inter-cellular components. The mechanism of cell adhesion is investigated primarily using ensemble-based experiments, which provides indirect information about how individual molecules work in such a complex system. Recent
developments in single-molecule (SM) fluorescence detection allow for the visualization of individual molecules with a good spatio-temporal resolution nanometer spatial resolution and millisecond time resolution). Furthermore,
advanced SM fluorescence techniques such as Förster Resonance Energy Transfer (FRET) and super-resolution microscopy provide unique opportunities to obtain information about nanometer-scale conformational dynamics of proteins as well as nano-scale architectures of biological samples. Therefore, the state-of-the-art SM techniques are powerful tools for investigating complex biological system such as the mechanism of cell adhesion. In this project, several constructs of fluorescently labeled
E-selectin will be used to study the conformational dynamics of E-selectin binding to
its ligand(s) using SM-FRET and combination of SM-FRET and force microscopy.
These studies will be beneficial to fully understand the mechanistic details of cell adhesion and migration of cells using the established model system of hematopoietic
stem cells (HSCs) adhesion to the selectin expressing endothelial cells (such as the E-selectin expressing endothelial cells in the bone marrow).
|
32 |
Fluorescent Nucleobases for Studying DNA Structure, Protein Interaction and Metal Binding / 蛍光性核酸類縁体の合成と応用:DNA-タンパク質複合体の構造及びメタルセンシングに関する研究Han, Ji Hoon 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21599号 / 理博第4506号 / 新制||理||1647(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 杉山 弘, 教授 秋山 芳展, 准教授 竹田 一旗 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
33 |
The pharmacological and cellular effects of human somatostatin receptor homo- and heterodimerization /Grant, Michael, 1976- January 2008 (has links)
No description available.
|
34 |
Characterization of histidine-tagged NaChBac ion channelsKhatchadourian, Rafael Aharon. January 2008 (has links)
No description available.
|
35 |
Two-photon 3d Optical Data Storage Via Fluorescence Modulation Of Fluorene Dyes By Photochromic DiarylethenesCorredor, Claudia 01 January 2007 (has links)
Three-dimensional (3D) optical data storage based on two-photon processes provides highly confined excitation in a recording medium and a mechanism for writing and reading data with less cross talk between multiple memory layers, due to the quadratic dependence of two photon absorption (2PA) on the incident light intensity. The capacity for highly confined excitation and intrinsic 3D resolution affords immense information storage capacity (up to 1012 bits/cm3). Recently, the use of photochromic materials for 3D memory has received intense interest because of several major advantages over current optical systems, including their erasable/rewritable capability, high resolution, and high sensitivity. This work demonstrates a novel two-photon 3D optical storage system based on the modulation of the fluorescence emission of a highly efficient two-photon absorbing fluorescent dye (fluorene derivative) and a photochromic compound (diarylethene). The feasibility of using efficient intermolecular Förster Resonance Energy Transfer (RET) from the non-covalently linked two-photon absorbing fluorescent fluorene derivative to the photochromic diarylethene as a novel read-out method in a two-photon optical data storage system was explored. For the purpose of the development of this novel two-photon 3D optical storage system, linear and two-photon spectroscopic characterization of commercial diarylethenes in solution and in a polymer film and evidence of their cyclization (O→C) and cycloreversion (C→O) reactions induced by two-photon excitation were undertaken. For the development of a readout method, Resonance Energy Transfer (RET) from twophoton absorbing fluorene derivatives to photochromic compounds was investigated under one and two-photon excitation. The Förster's distances and critical acceptor concentrations were determined for non-bound donor-acceptor pairs in homogeneous molecular ensembles. To the best of my knowledge, modulation of the two-photon fluorescence emission of a dye by a photochromic diarylethene has not been reported as a mechanism to read the recorded information in a 3D optical data storage system. This system was demonstrated to be highly stable and suitable for recording data in thick storage media. The proposed RET-based readout method proved to be non-destructive (exhibiting a loss of the initial fluorescence emission less than 20% of the initial emission after 10,000 readout cycles). Potential application of this system in a rewritable-erasable optical data storage system was proved. As part of the strategy for the development of diarylethenes optimized for 3D optical data storage, derivatives containing Ï€-conjugated fluorene molecules were synthesized and characterized. The final part of this reasearch demonstrated the photostability of fluorine derivatives showing strong molecular polarizability and high fluorescence quantum yields. These compounds are quite promising for application in RET-based two-photon 3D optical data storage. Hence, the photostability of these fluorene derivatives is a key parameter to establish, and facilitates their full utility in critical applications.
|
36 |
Förster Resonance Energy Transfer in PbS FilmsLeopold, Matthew 02 October 2014 (has links)
No description available.
|
37 |
Macromolecular Organization and Cell Function: A Multi-System AnalysisCrosby, Kevin C. 31 January 2009 (has links)
The interior of the cell is a densely crowded and complex arena, full of a vast and diverse array of molecules and macromolecules. A fundamental understanding of cellular physiology will depend not only upon a reductionist analysis of the chemistry, structure, and function of individual components and subsystems, but also on a sagacious exegesis of the dynamic and emergent properties that characterize the higher-level system of living cells. Here, we present work on two aspects of the supramolecular organization of the cell: the controlled assembly of the mitotic spindle during cell division and the regulation of cellular metabolism through the formation of multienzyme complexes.
During division, the cell undergoes a profound morphological and molecular reorganization that includes the creation of the mitotic spindle, a process that must be highly controlled in order to ensure that accurate segregation of hereditary material. Chapter 2 describes results that implicate the kinase, Zeste-white3/Shaggy (Zw3/Sgg), as having a role in regulating spindle morphology.
The congregation of metabolic enzymes into macromolecular complexes is a key feature of cellular physiology. Given the apparent pervasiveness of these assemblies, it seems likely that some of the mechanisms involved in their organization and regulation might be conserved across a range of biosynthetic pathways in diverse organisms. The Winkel laboratory makes use of the flavonoid biosynthetic pathway in Arabidopsis as an experimental model for studying the architecture, dynamics, and functional roles of metabolic complexes. Over the past several years, we have accumulated substantive and compelling evidence indicating that a number of these enzymes directly interact, perhaps as part of a dynamic globular complex involving multiple points of contact between proteins. Chapter 3 describes the functional analysis of a predicted flavonol synthase gene family in Arabidopsis. The first evidence for the interaction of flavonoid enzymes in living cells, using fluorescent lifetime imaging microscopy fluorescent resonance energy transfer analysis (FLIM-FRET), is presented in Chapter 4. / Ph. D.
|
38 |
Hindrance of the Myosin Power Stroke Posed by the Proximity to the Troponin Complex Identified Using a Novel LRET Fluorescent NanocircuitCoffee Castro-Zena, Pilar G. 05 1900 (has links)
A novel luminescence resonance energy transfer (LRET) nanocircuit assay involving a donor and two acceptors in tandem was developed to study the dynamic interaction of skeletal muscle contraction proteins. The donor transmits energy relayed to the acceptors distinguishing myosin subfragment-1 (S1) lever arm orientations. The last acceptor allows the detection of S1's bound near or in between troponin complexes on the thin filament. Additionally, calcium related changes between troponin T and myosin were detected. Based on this data, the troponin complex situated every 7 actin monomers, hinders adjacently bound myosins to complete their power stroke; whereas myosins bound in between troponin complexes undergo complete power strokes.
|
39 |
Luminescence Resonance Energy Transfer-Based Modeling of Troponin in the Presence of Myosin and Troponin/Tropomyosin Defining Myosin Binding Target Zones in the Reconstituted Thin FilamentPatel, Dipesh A. 05 1900 (has links)
Mechanistic details on the regulation of striated muscle contraction still need to be determined, particularly the specific structural locations of the elements comprising the thick and thin filaments. Of special interest is the location of the regulatory component, troponin, on the actin filament and how its presence influences the behavior of myosin binding to the thin filament. In the present study: (1) Luminescence resonance energy transfer was used to monitor potential conformational changes in the reconstituted thin filament between the C-terminal region of troponin T and myosin subfragment 1; (2) Location of troponin in previously derived atomic models of the acto-myosin complex was mapped to visualize specific contacts; and (3) Shortened tropomyosin was engineered and protein binding and ATPase assays were performed to study the effect of myosin binding close to the troponin complex. Analysis of the results suggest the following: (1) Irrespective of calcium levels, the C-terminal region of troponin T is located close to myosin loop 3 and a few actin helices that may perturb strong acto-myosin interactions responsible for force production. (2) Atomic models indicate myosin subfragment 1 cannot attain the post- powerstroke state due to the full motion of the lever arm being sterically hindered by troponin. (3) A shortened tropomyosin with five actin binding modules (instead of the native seven in muscle cells) binds actin contiguously in a head-to-tail manner and serves to increase the periodicity of troponin complexes on the actin filament. Such behavior eliminates the structure of the actin filament being responsible for the binding location of tropomyosin. (4) Differential behavior of myosin subfragment 1 i.e. (a) binding adjacent to troponin and (b) binding further away from troponin, is apparent as tropomyosin and troponin appear to govern the regions or "target zones" where myosin can bind productively along the actin filament. Physiologically, myosins able to bind close to troponin, but not participate in force production may function as mechanical sensors to attenuate or dampen the force generated from the so-called "target zones". Therefore, this could be a pseudo-regulatory mechanism that functions to protect the contractile apparatus from damage.
|
40 |
Detection and characterization of Huntingtin-protein interactions using resonance energy transfer methodologiesDominguez Martinez, Marta 25 July 2023 (has links)
HTT ist ein Protein, das durch seine Verbindung mit mehreren Interaktionspartnern an einer Vielzahl von zellulären Prozessen beteiligt ist. Darüber hinaus verursacht eine Mutation im HTT-Gen eine Krankheit, die als Huntington-Krankheit (HD) bezeichnet wird.
Aufgrund der gerüstbildenden Eigenschaften von HTT wurde eine Vielzahl von Studien durchgeführt, um potenzielle therapeutische Ziele zu identifizieren. Die auf dem Resonanzenergietransfer (RET) basierenden Ansätze sind jedoch im Bereich der Huntington-Krankheit noch nicht vollständig genutzt worden. Daher habe ich versucht, solche Ansätze in Interaktionsstudien mit dem HTT-Exon 1 (HTTexon1) und dem Protein in voller Länge zu bewerten.
Ich habe eine Benchmarking-Studie mit einem zuvor beschriebenen Huntingtin-interagierenden Protein (HIP) und HTTex1 (Wildtyp und mutiert) unter Verwendung eines BRET-Ansatzes durchgeführt. Meine Studien bestätigten die binäre Interaktion zwischen HTTex1 und sieben Proteinen. Ich habe auch drei Interaktionen mit der mutierten Version von HTTex1 bestätigt. Zusätzlich bewertete ich die Interaktionen durch FRET-Messungen mit Hilfe der Durchflusszytometrie.
Der zweite Teil dieser Arbeit zielte darauf ab, ein Hochdurchsatz-Screening für den Nachweis von Protein-Protein-Interaktionen (PPIs) mit HTT in voller Länge (FL) unter Verwendung von Biolumineszenz-Resonanz-Energie-Transfer zu etablieren. Auf diese Weise konnte ich die Wechselwirkung zwischen FL HTT und einer Bibliothek von 580 Proteinkinasen bewerten. Schließlich analysierte ich die Spezifität der entdeckten Wechselwirkungen, indem ich die unspezifische Bindung durch Donor-Sättigungstests bewertete.
Zusammenfassend belegen meine Ergebnisse die potenzielle Verwendung von Resonanzenergietransferansätzen zur Validierung von HTT-Wechselwirkungen. Außerdem wird ein neues Screening-Tool vorgestellt, das dazu beitragen soll, HTT-Interaktoren zu identifizieren und zu verifizieren. / HTT is a protein involved in a plethora of cellular processes through its association with several interaction partners. Furthermore, a mutation in the HTT gene, causes a disease denominated Huntington’s disease (HD).
Due to the scaffolding properties of HTT, a large variety of studies have been performed to identify potential therapeutical targets. However, resonance energy transfer-based (RET) approaches have not been fully exploited in the HD field. Therefore, I aimed to evaluate such approaches in interaction studies using the HTT exon 1 (HTTexon1) as well as the full-length protein.
I performed a benchmarking study with a previously described huntingtin interacting protein (HIP) and HTTex1 (wild type and mutated) using a BRET approach. My studies confirmed the binary interaction between HTTex1 and seven proteins. I also confirmed three interactions with the mutated version of HTTex1. Additionally, I also evaluated the interactions by measuring FRET using flow cytometry.
The second part of this work aimed to stablish a high-throughput screening for the detection of protein-protein interactions (PPIs) with full-length (FL) HTT using bioluminescence resonance energy transfer. With this, I was able to evaluate the interaction between FL HTT and a library composed by 580 protein kinases. Finally, I analysed the specificity of the detected interactions by assessing unspecific binding through donor saturation assays.
In summary my results provide evidence of the potential use of resonance energy transfer approaches to validate HTT interactions. Additionally, a new screening tool is presented to contribute to identify and verify HTT interactors.
|
Page generated in 0.0861 seconds