Spelling suggestions: "subject:"retimer"" "subject:"destimer""
1 |
Coaxial Cable Equalization Techniques at 50-110 GbpsBalteanu, Andreea 21 July 2010 (has links)
Next generation communication systems are reaching 110Gbps rates. At these frequencies, the skin effect and dielectric loss of copper cables cause inter-symbol interference (ISI) and frequency dependent loss, severely limiting the channel bandwidth. In this thesis, different methods for alleviating ISI are explored. The design of the critical blocks of an adaptive channel equalizer with up to two times oversampling are presented.
The circuits were fabricated in a 0.13μm SiGe BiCMOS technology. The linear, adaptive equalizer operates up to 70Gbps and its measured S-parameters exhibit a single-ended peak gain of 12.2dB at 52GHz, allowing for 31dB of peaking between DC and 52GHz. Equalization is demonstrated experimentally at 59Gbps for a cable loss of 17.9dB. These results make it the fastest receive equalizer published to date. A retiming flip-flop operating between 72 and 118 GHz, the highest reported in silicon, is also designed and characterized, showing less than 500-fs jitter.
|
2 |
Coaxial Cable Equalization Techniques at 50-110 GbpsBalteanu, Andreea 21 July 2010 (has links)
Next generation communication systems are reaching 110Gbps rates. At these frequencies, the skin effect and dielectric loss of copper cables cause inter-symbol interference (ISI) and frequency dependent loss, severely limiting the channel bandwidth. In this thesis, different methods for alleviating ISI are explored. The design of the critical blocks of an adaptive channel equalizer with up to two times oversampling are presented.
The circuits were fabricated in a 0.13μm SiGe BiCMOS technology. The linear, adaptive equalizer operates up to 70Gbps and its measured S-parameters exhibit a single-ended peak gain of 12.2dB at 52GHz, allowing for 31dB of peaking between DC and 52GHz. Equalization is demonstrated experimentally at 59Gbps for a cable loss of 17.9dB. These results make it the fastest receive equalizer published to date. A retiming flip-flop operating between 72 and 118 GHz, the highest reported in silicon, is also designed and characterized, showing less than 500-fs jitter.
|
3 |
Millimeter-wave Analog to Digital Converters: Technology Challenges and ArchitecturesShahramian, Shahriar 14 November 2011 (has links)
While data converters have been around for nearly nighty years, mm-wave data converters
are still in their infancy. Only recently the 40-GHz sampling barrier was broken with the
introduction of the next generation high-speed sampling oscilloscopes. Meanwhile, data
communication is the main driving force behind mm-wave data converter development.
As with any mm-wave circuit, designers must go beyond simply relying on technology
advancement to archives acceptable performance. Careful device and passive modeling is
critical and systematic design methodology may o er repeatable and scalable mm-wave
designs.
In this thesis the design methodology and architectural challenges of mm-wave ADCs
are explored. Some of the fundamental mm-wave ADC building blocks such as track
and hold ampli ers, data distribution networks and
ip-
ops are implemented in SiGe
BiCMOS and CMOS technologies and characterized. Several record breaking circuits are
presented along with systematic design methodology. The impact of these circuit blocks
on the performance of the next generation ADCs is studied and experimentally veri ed
using a 35-GS/s, 4-bit ADC-DAC chain implemented in a SiGe BiCMOS technology.
|
4 |
Millimeter-wave Analog to Digital Converters: Technology Challenges and ArchitecturesShahramian, Shahriar 14 November 2011 (has links)
While data converters have been around for nearly nighty years, mm-wave data converters
are still in their infancy. Only recently the 40-GHz sampling barrier was broken with the
introduction of the next generation high-speed sampling oscilloscopes. Meanwhile, data
communication is the main driving force behind mm-wave data converter development.
As with any mm-wave circuit, designers must go beyond simply relying on technology
advancement to archives acceptable performance. Careful device and passive modeling is
critical and systematic design methodology may o er repeatable and scalable mm-wave
designs.
In this thesis the design methodology and architectural challenges of mm-wave ADCs
are explored. Some of the fundamental mm-wave ADC building blocks such as track
and hold ampli ers, data distribution networks and
ip-
ops are implemented in SiGe
BiCMOS and CMOS technologies and characterized. Several record breaking circuits are
presented along with systematic design methodology. The impact of these circuit blocks
on the performance of the next generation ADCs is studied and experimentally veri ed
using a 35-GS/s, 4-bit ADC-DAC chain implemented in a SiGe BiCMOS technology.
|
Page generated in 0.0216 seconds