Spelling suggestions: "subject:"reuse."" "subject:"keuse.""
501 |
The diagrammatic specification and automatic generation of geometry subroutinesLi, Yulin, Ph. D. 20 October 2010 (has links)
Programming has advanced a great deal since the appearance of the stored-program architecture. Through the successive generations of machine codes, assembly languages, high-level languages, and object-oriented languages, the drive has been toward program
descriptions that express more meaning in a shorter space. This trend continues today with
domain-specific languages. However, conventional languages rely on a textual formalism
(commands, statements, lines of code) to capture the programmer's intent, which, regardless of its level of abstraction, imposes inevitable overheads. Before successful programming activities can take place, the syntax has to be mastered, names and keywords
memorized, the library routines mastered, etc. Existing visual programming languages avoid some of these overheads, but do not release the programmer from the task of specifying the program logic, which consumes the main portion of programming time and
also is the major source of difficult bugs.
Our work aims to minimize the demands a formalism imposes on the programmer of geometric subroutines other than what is inherent in the problem itself. Our approach frees the programmer from syntactic constraints and generates logically correct programs automatically from program descriptions in the form of diagrams. To write a program, the programmer simply draws a few diagrams to depict the problem context and specifies all
the necessary parameters through menu operations.
Diagrams are succinct, easy to learn, and intuitive to use. They are much easier to modify than code, and they help the user visualize and analyze the problem, in addition to providing information to the computer. Furthermore, diagrams describe a situation rather than a task and thus are reusable for different tasks—in general, a single diagram can generate many programs. For these reasons, we have chosen diagrams as the main specification mechanism.
In addition, we leverage the power of automatic inference to reason about diagrams and generic components—the building blocks of our programs—and discover the logic for assembling these components into correct programs. To facilitate inference, symbolic facts encode entities present in the diagrams, their spatial relationships, and the preconditions and effects of reusable components. We have developed a reference implementation and tested it on a number of real-world examples to demonstrate the feasibility and efficacy of our approach. / text
|
502 |
REUSE SYSTEM DESIGN FOR BORDER IRRIGATION.YITAYEW, MULUNEH. January 1982 (has links)
Advances in mathematical modelling and the availability of high speed computers with considerable memory size is making it possible to study the hydraulics of border irrigation in a greater depth than every before. A zero inertia mathematical model was found to be reliable and inexpensive among the models available in border irrigation hydraulics and was used for this study to simulate free outflow flowing border irrigation. Special emphasis was given to the runoff produced from such a system. This study dealt particularly with, the identification of pertinent open channel variables affecting runoff in border irrigation, presentation of predictive graphical and mathematical solution to quantify runoff, and with utilization of these solutions in developing reuse system design criteria. Inflow rate, surface resistance, border slope, soil infiltration characteristics, application time (time of cutoff and length of run of the border) were among other variables studied. As one might expect, runoff was found to increase with slope, flow rate, application time and decrease with increase in infiltration rate, length of run and bed and vegetation drag. Considering the number of variables affecting runoff characteristics from a given irrigation, it was obvious to see a thorough examination of each variable in dimensional terms was practically impossible. Also, presentation of the results would have required too many graphs. Dimensional anslysis was used to solve this problem and in developing dimensionless runoff curves. The ability to quantify runoff made it possible to develop reuse system design formula for proper sizing of reuse systems under several operational requirements. Shape function for the ultimate infiltrated depth profile was used to get times of runoff and also calculate various efficiencies which are useful for evaluating the system. The study shows, through the use of reuse system, the potential application efficiency can be changed from present values of 60 percent to 90 percent in Arizona. It also can be used to demonstrate the saving in energy that can be realized through such system. Step by step procedures for the design of reuse system using graphical and mathematical solutions are presented with a sample problem worked out. It is expected that the result of this study can be used by designers as well as operators of border irrigation systems without any difficulty with the aid of a simple pocket calculator. Other uses of the study include getting optimal design for the system itself by evaluating various possible designs and classroom instruction on the application of dimensional analysis to open channel hydraulics problems and design of reuse systems.
|
503 |
The potential of urban runoff as a water resource.Mische, Eric Frank,1943- January 1971 (has links)
With the population of urban areas rapidly increasing, a much greater demand is being placed on existing water supplies. The arid southwestern region of the United States, in particular, is experiencing large population increases while possessing limited water resources. Tucson is a representative city in the region facing problems of providing an adequate water supply to the public in the future. Presently, Tucson is being supplied entirely with groundwater. Increases in population and industrial activities, however, have caused a steady decline of the groundwater table in the Tucson Basin. The reclamation of wastewater and the importation of water have been studied as alternatives in alleviating the annual decline of the groundwater table. Problems still exist, however, preventing the immediate use of both aforementioned supplies of water. In developing the water resources of an area, every possible source of water must be evaluated. A source which has not received much attention, but which merits much attention, is the water occurring as urban runoff following intense storms. In order to evaluate the potential of urban runoff as a water supply, the study includes investigations of water quality, water treatment through storage and coagulation, and problems involved with the utilization of storm water. Samples of runoff from three diversified urban watersheds in the Tucson area were analyzed for bacterial, mineral, pesticide, solids, and chemical oxygen demand concentrations. The watersheds were characterized according to the percentage of the total area devoted to a particular land use. In addition, the hydrologic characteristics of each storm were tabulated. Correlation coefficients were determined between the quality parameters and the watershed and hydrological characteristics. Development of regression equations equating quality parameters as a function of both watershed and hydrological characteristics was also undertaken. The final analysis of the quality study involved the determination of relationships between quality parameters of chemical oxygen demand, total coliforms and suspended solids and the point of time on the hydrograph at which runoff was sampled. Prior to beneficial use of the urban runoff, treatment to varying degrees will be required. In the second phase of this study, the efficiency of treatment by the simple methods of storage and alum coagulations was studied. Five gallon samples were collected from randomly selected storms and used either in the storage or coagulation study. Changes in chemical oxygen demand, solids and bacterial concentrations were evaluated at selected intervals during storage for a period of a week. Jar test studies utilizing varying doses of alum were undertaken on water collected from each of the watersheds, determining the efficiency of chemical oxygen demand, turbidity, and total coliform removals. The final phase of the study involved discussion of the problems attendant with the planning and design of treatment facilities. Included in this phase were sections involving water quality standards and the related treatment processes, waste sludge production and treatment methods, and costs pertaining to treatment. Legal aspects of appropriating the urban runoff were considered and the possible conflicts between upstream and downstream interests noted. The study concluded with a demonstration of the application of dynamic programming for optimally planning the location and capacity of storage treatment facilities at urban sites.
|
504 |
An institutional and economic assessment of water reuse in the Tucson BasinLieuwen, Andrew L. January 1989 (has links)
With groundwater resources becoming less available in the physical, economic, and legal senses, water reuse is rapidly gaining momentum in the arid West. An institutional assessment of water reuse in the Tucson Basin in Arizona indicates that despite institutional changes encouraging the substitution of effluent for native groundwater, many opportunities for water reuse are precluded by existing water rights arrangements and insufficient economic incentives. An economic assessment compares potential benefits and costs of implementing water reuse plans for the Tucson area with potential benefits and costs of alternative water-supply scenarios in which similar quantities of water are provided from other sources. Alternative water sources include pumping native groundwater, "reallocating" water saved through reduction in low value water uses, and importing surface water and groundwater from other basins. The results of this study indicate that at the present time, there is no convincing economic justification for increasing water reuse as planned by the City of Tucson. Not only are reduction in use and importation alternatives less costly to implement than increasing effluent use, they also save more groundwater. The results of the economic assessment indicate that the citizenry of the Tucson Basin would be better served if planned increases in the use of effluent in the Tucson metropolitan area were postponed until the costs become more competitive with the costs of alternatives.
|
505 |
Production of the Forage Halophyte Atriplex lentiformis on Reverse Osmosis BrineSoliz, Deserié H. January 2011 (has links)
Throughout the arid and semi-arid regions, researchers have been looking at different ways to deal with the salinity problem of the soil and water as well as feed for the livestock. Study 1 focused on a pilot project conducted in an irrigation district in Marana, AZ, USA, looking at using Reverse Osmosis (RO) concentrate on Atriplex lentiformis (quailbush) and then harvesting the plant to be tested for its possible use as a supplement in feed for livestock. Three irrigation treatments were tested based on the potential evapotranspiration rate (ET(o)): (1) plots irrigated at ET(o) adjusted daily via an on-site micrometeorology station; (2) plots irrigated at 1.5 ET(o) adjusted daily; (3) plots irrigated at a constant rate throughout the year based on the mean of annual ET(o). The plants produced 15-24 tons ha⁻¹ year⁻¹ of biomass and could be irrigated at the rate of ET(o), ca. 2 m yr⁻¹ at this location. It was concluded that irrigation of halophyte forage crops provide a viable strategy for extending water supplies and disposing of saline water in arid-zone irrigation districts. Study 2 focused on a field data from Study 1 and two greenhouse experiments. The greenhouse experiments were conducted in 2007 and 2010. The 2010 greenhouse trials, under well-watered conditions, showed that the apparent zero-point-salinity for yield was 47.3 g L⁻¹ TDS. An additional greenhouse experiment was conducted in which plants in sealed pots were grown to the wilting point on a single application of water. The experiment was conducted at different salinities to see if salinity and water stress were additive factors in reducing yield and Water Use Efficiency (WUE). To the contrary, yield and WUE actually increased as a function of salinity, perhaps due to conversion from C3 to C4 photosynthesis over the salinity range (noted in other studies with A. lentiformis). We conclude that xerohalophytes such as A. lentiformis could greatly extend the useful range of salinities under which forage crops can be grown in arid-zone irrigation districts.
|
506 |
Vision om en Återbruksby i Växjö / Vision of a Re-use center in VäxjöLindell, Johan, Muratovic, Armin, Lögdahl, Per-David January 2013 (has links)
Studiens syfte är att presentera en vision om en återbruksby i form av planskisser och illustrationer. Studien ska också förklara samhällsnyttan och syftet med en återbruksby. En återbruksby (även kallad kretsloppspark) är ett område för hantering av återbrukbara material och produkter. Dagsläget för hur avfall hanteras och framtida planer beskrivs också i rapporten. Enligt EU direktiv skall återanvändning och återbruk öka för att främja miljön. Studien undersöker organisationen Mackens situation och hur deras verksamhet kan bli en återbruksby. Macken vill driva en återbruksby och ska presentera visionen för kommunen i hopp om fortsatt projektering. Visionen innehåller lokaler som alla har koppling till återbruk och förslag på utformning av dessa utifrån olika huskoncept. Som inspiration för områdesplanering används liknande parker.
|
507 |
Large-Scale Empirical Studies of Mobile AppsMojica Ruiz, Israel Jesus 06 August 2013 (has links)
Mobile apps (or apps) are software applications developed to run on mobile devices such as smartphones and tablets, among other devices. The number of apps has grown tremendously since Apple opened the first app store in 2008. For example, in March of 2009 the Google Play app store (formerly known as Android Market) had only 2,300 apps, and by mid of 2013 there were more than 800,000 apps. Given the accelerated rate of growth in the number of apps, new software engineering challenges have emerged in order to help ease the software development practices of app developers. In this thesis we examine three examples of these challenges, namely code reuse in mobile apps, app ratings, and the use of ad libraries within apps. We carry out our case studies on thousands of Android apps from the Google Play market.
We find that code reuse in mobile apps is considerably higher than in desktop/server apps. However, identical copies of mobile apps are rare. We find that the current ratings system is not able to capture the dynamics of the evolving nature of apps. Thus, we were able to show the need for a more elaborate rating system for the apps. Finally, we observe that a considerable number of free-to-download apps are dependant on ads for their revenue. Our findings suggest that "ad maintenance" is a tough challenge that developers of mobile apps have to face. / Thesis (Master, Computing) -- Queen's University, 2013-08-04 22:03:54.577
|
508 |
A Feasibility Analysis of Site-Level Stormwater Reuse for Commercial Developments in CanadaNanos, Michael 19 August 2013 (has links)
Municipalities are experiencing a growing water management challenge as a result of population growth in water-dependent communities. The rising cost of potable water, in addition to limits placed on stormwater discharges, provide opportunities for the wide-scale implementation of stormwater reuse. This thesis presents a feasibility analysis of a novel site-level stormwater reuse concept for commercial developments in Canada. Historical rainfall data and SWMM 5.0 were used to evaluate the hydrologic potential of the reuse system to replace potable water for end-use demands of toilet flushing and garden irrigation on single- and multi-tenant commercial sites. Performance criteria were used to evaluate: (i) the volume and percent potable water replaced with reclaimed stormwater, (ii) the volume and frequency of potable water ‘top-ups’ to the reclaimed stormwater storage facility, and (iii) the volume and frequency of overflows in the reclaimed stormwater storage facility. A discounted payback method was used to determine the length of time (in years) required for annual water savings to equal the initial capital investment of the stormwater reuse system. The analysis was performed from the perspective of the private landowner in six Canadian locations, including Vancouver, Edmonton, Regina, Saskatoon, Toronto, and Quebec City. The methodology and results presented is intended to provide insight to landowners and municipal bodies on the potential of site-level stormwater reuse to aid large-scale adaption and implementation. The results suggest that regions with high average annual rainfall depths produce high potable water replacement rates ranging from 64% to 99% while cities that experience seasonal arid conditions and lower average annual rainfall depths achieve lower potable water replacement rates in the range of 30% and 83%. The test locations of Vancouver and Quebec achieved longer payback periods of 10 years to 26 years due to the relative low cost of potable water. The Saskatoon and Regina locations produced shorter payback periods ranging from 3 to 6 years due to the higher potable water prices. Toronto was found to have relatively short payback periods ranging from 4 to 5 years on account of its high potable water replacement rates and high potable water prices. / Thesis (Master, Civil Engineering) -- Queen's University, 2013-08-19 14:44:23.024
|
509 |
Application of pinch technology in an integrated pulp and paper mill.Naylor, Gladys M. January 2003 (has links)
The objective of this investigation was to utilise water pinch analysis as a tool for the optimisation of fresh water use in an integrated pulp and paper mill. The investigation was carried out at Mondi Paper in Merebank, south of Durban. The pulp and paper manufacturing process is a large consumer of fresh water and minimising the amount of fresh water used in the processes is beneficial from both a cost and environmental point of view. There are examples of mills which have "closed" their water systems to the extent that fresh water make up is minimal and most of the water is recycled and reused in a closed loop. These examples provide guidance on the basis of proven methods for reducing water consumption in the pulp and paper industry and can be used as a reference for mills wishing to reduce water consumption by making use of tried and tested methods. This investigation sought to provide an alternative method to identifying potential savings in fresh water consumption by making use of water pinch analysis. This was done at Mondi Paper by analysing individual parts of the mill and then a larger section of the mill which included both pulp and paper production. Flow rates of water streams and fibre content in those streams were obtained from plant data, where available, and this data was used to produce.a mass balance using the Linnhoff-March software, Water Tracker. The balance produced using Water Tracker provided the missing flow and fibre content data and this data was used as the input for the Linnhoff-March software, Water Pinch , to perform the water pinch analysis. The results achieved when analysing the individual parts of the mill did not demonstrate potential for significant savings in fresh water consumption, however the analysis of the integrated section of the mill identified a potential reduction in fresh water. It was found that the application of a single contaminant analysis to the larger section of the mill identified a possible reduction in the freshwater requirement of 8.1% and a reduction in effluent generated of 5.4%. This is a savings of R1 548 593 per annum based on 2003 costs of fresh water and effluent disposal. This analysis was conducted using the most simplified representation possible to produce meaningful results in order to evaluate the effectiveness of water pinch analysis in optimising the fresh water consumption in an integrated pulp and paper mill. It is demonstrated that water pinch analysis is potentially a useful tool in determining the minimum fresh water requirement of a site. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.
|
510 |
Small-scale constructed wetland for onsite light grey water treatment and recyclingKadewa, Wilfred William January 2010 (has links)
This study focused on the investigation of the impact of household cleaning and personal care products on the quality of grey water and the assessment and optimisation of grey water treatment by a novel constructed wetland design. The prototype wetland design which comprised three-stage cascading beds (0.27 m 2 by 0.20 m deep) with sand media, (d10: 1.0 mm and d90: 4.0 mm) was tested for treatment performance to meet non-potable reuse standards in three versions, unplanted open beds, unplanted covered beds, and planted beds (comprising mixtures of Iris pseudacorus, Iris chrysographes, Carex elata Aurea and Mentha aquatica). The prototypes were benchmarked against a standard single-pass wetland (6 m 2 by 0.7 m) planted with Phragmites australis. Performance was measured in terms of removal of conventional water quality determinant parameters, as well as Total coliforms and E coli, and surfactants. Microbial dynamics were also monitored during the study by looking at variations in microbial compositions with time for the different wetlands. All the wetland versions effectively removed more than 98 % turbidity and organics meeting the most stringent reuse wastewater reuse standards of < 2.0 NTU and < 10 mg BOD5/L respectively. The influent grey water had low BOD:COD ratio ranging from 0.27 – 0.45, which is indicative of low biodegradability. The comparison of the cascade wetland performances showed the following: open beds > planted = covered, with the open beds version meeting reuse standards virtually throughout the monitoring period, despite recurrence of schmutsdecke in the top bed. All wetland technologies supported viable populations of microorganisms. Only phospholipid fatty acids (PLFAs) of lower carbon chain length (< C20) had concentrations greater than 1 mol %, in all the wetlands beds, confirming that the majority of the PLFAs in the media were from contribution of microbial organisms and not plant organic matter. Characterisation of microbial organisms was carried out to understand the constructed wetlands functioning and thus the treatment processes. The household products showed nutrient deficiency signifying low treatability. Product branding did not show correlation with any water quality parameters. In terms of toxicity, laundry and cleaning products were more inhibiting to soil microorganisms than were personal care products.
|
Page generated in 0.0664 seconds