• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comportement et rupture de fibres cellulosiques lors de leur compoundage avec une matrice polymère / Behaviour and rupture of cellulosic fibres during their compounding with a polymer matrix

Le Duc, Anne 20 December 2013 (has links)
L'objectif de ce travail de thèse, réalisé dans le cadre de la Chaire Industrielle Bioplastiques financée par Mines ParisTech et Arkema, l'Oreal, Nestle, PSA et Schneider Electric, est de fournir une étude systématique sur les relations entre les conditions opératoires du procédé de compoundage et la structure de biocomposites polypropylène/fibres lin et Tencel®. En particulier, le comportement et la rupture des fibres ont été étudiés de manière détaillée pendant la mise en œuvre à l'état fondu en mélangeur interne et par extrusion bivis.Les fibres ont été observées in-situ en écoulement dans la matrice grâce à un système rhéo-optique. Ainsi, il a été montré que la décohésion des faisceaux de lin est facilitée par un rapport de forme initial plus grand. La fragmentation des fibres résulte d'un phénomène de fatigue et est provoquée par l'accumulation des déformations et de l'énergie mécanique. Au niveau de leur point de rupture, les fibres de lin et de Tencel® se déchirent et fibrillent, alors que les fibres élémentaires de lin cassent près de leurs « genoux ». Des analyses de distributions de tailles des fibres après compoundage avec la matrice ont corroboré les observations rhéo-optiques. Lorsque les conditions de mélange sont sévères, chaque « genou » devient un point de rupture et la longueur finale des fibres de lin se retrouve être égale à la longueur moyenne entre les « genoux ». Les faisceaux de lin initialement plus courts ne se dissocient et ne se fragmentent que très peu. La rupture des fibres de lin est différente en fonction de leur taille initiale et ces fibres ne conduisent pas au même comportement rhéologique pour les composites. En revanche, pour les fibres unitaires Tencel®, la taille initiale n'a que très peu d'influence sur leurs dimensions finales, à condition que les fibres ne soient pas trop longues et trop difficiles à disperser. Le temps de mélange est apparu déterminant pour préserver le rapport de forme des fibres. La déformation cumulée s'est révélée être un meilleur paramètre que l'énergie mécanique spécifique pour décrire à la fois la rupture des fibres de lin et de Tencel®. Les propriétés mécaniques en traction uniaxiale ont enfin été caractérisées et mises en relation avec les conditions de mélange et les dimensions finales des fibres. / The objective of this work, performed in the frame of the Industrial Chair in Bioplastics, financed by Mines ParisTech and Arkema, l'Oreal, Nestle, PSA and Schneider Electric, is to provide a systematic study of the relationships between the compounding conditions and the structure of biocomposites based on polypropylene/ flax and Tencel® fibres. In particular, the behaviour and the rupture of fibres were studied in detail during melt processing in an internal mixer and a twin screw extruder.The fibres were observed in situ during shear flow in a matrix by rheo-optics. The decohesion of flax bundles was shown to be made easier for fibres with higher initial aspect ratio. The fibres fragmentation occured by fatigue and is caused by an accumulation of strain and mechanical energy. At the breaking point, flax and Tencel® fibres are tearing and fibrillating, whereas elementary flax fibres break at “kink bands”. The analysis of fibres size distributions after compounding has corroborated rheo-optical observations. When processing conditions are severe, each “kink band” becomes a breaking point, and the final fibres length is equal to the mean length between two “kind bands”. The short flax bundles dissociate and break up less after compounding as compared to long bundles. As a result, the rheological properties of composites are different. The initial size of Tencel® fibres has almost no effect on fibre final dimensions, provided that they are not too long and thus do not make agglomerates. The mixing time seems to be decisive to preserve fibres aspect ratio. The cumulative strain was shown to be a better parameter than specific mechanical energy to describe fibres rupture for both Tencel® and flax fibres. Uniaxial tensile properties were characterized and correlated to the processing conditions and to final dimensions of fibres.
2

Caractérisation des tissus biologiques mous par diffusion multiple de la lumière / Characterization of soft biological tissues by diffusing wave spectroscopy

Zerrari, Naoual 18 March 2014 (has links)
La diffusion multiple de la lumière(DWS) est une technique qui permet de sonder la dynamique interne de milieux opaques et concentrés à des fréquences élevées. Elle a été utilisée pour déterminer les propriétés viscoélastiques de ces milieux. Elle a l'avantage d'être non destructive, rapide et sensible. Ce travail a pour objectif l'étude des tissus biologiques mous par DWS. La première étape est la mise en place du dispositif expérimental. Afin d'évaluer les limites de la technique, des études successives ont été réalisées sur des matériaux de complexité croissante (une suspension, le lait et une mousse) tendant vers la complexité structurale des tissus biologiques. Pour la suspension et le lait, la théorie de DWS peut s'appliquer et permet de mesurer avec une bonne précision leur viscosité. Les limites de DWS pour évaluer la viscosité sont atteintes avec la mousse dont la structure complexe est proche de celle des tissus biologiques. Enfin, le cortex rénal, le parenchyme hépatique et le cerveau de porc ont été étudiés. La théorie appliquée pour les milieux précédents ne permet pas de remonter à leur viscosité. Mais la DWS a permis de suivre leur microstructure au cours de la déshydratation et de la dégénérescence. Pour tous ces milieux la répétabilité, la reproductibilité, la variabilité et l'effet des conditions expérimentales ont été évalués. La DWS pourrait être utilisée pour étudier l'effet de la température et de la congélation sur le spectre de DWS des tissus biologiques ou combinée à la rhéologie pour suivre l'évolution des spectres de DWS au cours d'un cisaillement / Diffusing Wave Spectroscopy (DWS) is a technique that allows to probe the internal dynamics of opaque media and concentrated at high frequencies. It has been used to determine the viscoelastic properties of these media. It has the advantage of being nondestructive, rapid and sensitive. This work aims to study soft biological materials by DWS. The first step is setting up of the experimental device. To evaluate the limits of the art, successive studies were conducted on materials of increasing complexity (a suspension, milk and a foam) tending to the structural complexity of biological tissues. Concerning the suspension and milk, two concentrated media, and mono-dispersed in which the particles are in Brownian motion, DWS allowed to measure with good precision their viscosity. The limits of DWS to evaluate the viscosity of the medium are achieved with the foam which the complex structure is similar to that of soft biological tissues. Finally, the renal cortex, the hepatic parenchyma and porcine brain were studied. The theory applied to previous media does not allow to calculate viscosity. But the DWS allowed us to follow their microstructure during dehydration and degeneration. For all these media, repeatability, reproducibility, variability and effect of experimental conditions were evaluated. The DWS could be used to study the effect of temperature and freezing on the DWS spectrum of biological tissues, or combined with rheology to monitor the evolution spectra DWS during shear

Page generated in 0.0478 seconds