Spelling suggestions: "subject:"ribonucléotide réduction"" "subject:"ribonucléotide réducteur""
1 |
Étude des fonctions anti-apoptotique et de chaperon moléculaire de la sous-unité R1 de la ribonucléotide réductase du virus de l'herpès simplex de type-2Chabaud, Stéphane January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Relation entre la réponse aux dommages à l'ADN et la dynamique de réplication chez les mammifères : rôle du point de contrôle intra-STecher, Hervé 27 September 2012 (has links) (PDF)
Au cours de ma thèse au sein du laboratoire du Professeur Michelle Debatisse, je me suis intéressé aux mécanismes maintenant la stabilité du génome et contrôlant la dynamique de réplication dans les cellules de mammifères. J'ai étudié le rôle des kinases ATR (" Ataxia Telangectasia and Rad3 related ") et Chk1 (" Checkpoint Kinase 1 "), du point de contrôle intra-S (" checkpoint "), dans le contrôle de la dynamique de réplication. Cette première étude m'a amené à étudier la relation entre les dommages à l'ADN et la dynamique de réplication, dans des modèles cellulaires déficients pour des facteurs de la réponse aux dommages à l'ADN (DDR), appartenant soit au " checkpoint ", soit à la voie de réparation par recombinaison homologue (HR), tels que Rad51 et BRCA2. Je montre ici, que le ralentissement des fourches de réplication et l'augmentation de la densité d'événements d'initiation, observés dans des cellules déficientes pour Chk1 ou Rad51, sont la conséquence indirecte des lésions apparaissant spontanément dans de telles cellules. Le ralentissement des fourches dans ces cellules dépend d'une perturbation de la disponibilité en précurseurs de nucléotides qui dépend de la sur-expression et/ou de la re-localisation de la sous-unité p53R2 de la ribonucléotide réductase (RNR). De plus, contrairement à ce qui était proposé, je montre que Chk1 n'a pas de rôle actif dans la répression des origines latentes, mais que c'est la vitesse des fourches qui détermine l'espacement entre les origines actives, par un mécanisme de compensation découvert auparavant au laboratoire (Anglana, 2003 ; Courbet, 2008). L'ensemble de mes résultats permet de proposer un mécanisme général de communication entre la réplication et la réparation. Ce mécanisme confère un avantage aux cellules, puisque le ralentissement des fourches stabilise la machinerie de réplication qui voyage sur une matrice endommagée, et l'activation d'origines latentes procure une source de sauvetage pour les fourches bloquées.
|
3 |
Effets du rayonnement ultraviolet a sur la réplication de l’adn chez les eucaryotes supérieurs / Effects of ultraviolet radiation on the replication of DNA in higher eukaryotesGraindorge, Dany 10 October 2012 (has links)
Le rayonnement ultraviolet (UV) émis par le soleil et qui atteint la peau de chaque individu est composé majoritairement de photons UVA (λ de 315 à 400 nm), le reste (5 à 10 %) étant composé d’UVB les plus longs (λ de 300 à 315 nm), car les radiations de longueur d’onde 300nm, c’est-à-dire les plus toxiques en terme de santé humaine, sont absorbées par la couche d’ozone stratosphérique. Contrairement aux UVB, les radiations UVA sont faiblement absorbées par l’ADN et de fait, génèrent peu de dimères cyclobutaniques de pyrimidines. Néanmoins, un des problèmes majeurs posés par une exposition aux UVA tient à ce que ce rayonnement excite certains composés endogènes photosensibles, inducteurs de la production d’espèces réactives de l’oxygène (ROS) qui peuvent alors endommager les composants cellulaires tels que les lipides,les acides nucléiques et les protéines. De ce fait, si les UVB restent le facteur étiologique majeur contribuant à la cancérogenèse cutanée photoinduite, un rôle des UVA, via la production de ROS, semble également émerger. Des précédents travaux obtenus au laboratoire ont montré que le rayonnement UVA ralentit la réplication de l’ADN, indépendamment de l’activation des points de contrôle du cycle cellulaire. Les auteurs ont émis l’hypothèse que les UVA, via l’oxydation des protéines, pouvaient altérer la machinerie de réplication. Mon travail de thèse a donc consisté à tenter de préciser le mécanisme qui gouverne ce retard de la réplication de l’ADN induit par les UVA dans les cellules de mammifères.Pour étudier au niveau moléculaire les effets des UVA sur la réplication, nous avons tout d’abord mis en place et utilisé au laboratoire la technique du peignage moléculaire (DNA combing) qui permet de mesurer divers paramètres de la réplication. Ainsi, nous montrons que le rayonnement UVA inhibe immédiatement et transitoirement les vitesses de fourches alors que l’inhibition sur l’initiation des origines est plus prolongée. Dans le cadre d’une collaboration, nous montrons également que les radiations UVA induisent une diminution modeste et transitoire du pool de dNTPs intracellulaires. La complémentation en ribonucléosides ne semble pas suffisante pour restaurer une vélocité normale de fourches immédiatement après UVA, ni la réplication dans sa totalité. En parallèle, nous observons l’oxydation réversible de la sous-unité R1 de la ribonucléotide réductase impliquée dans la biosynthèse des dNTPs. Bien que cette oxydation ne puisse expliquer la baisse transitoire du pool de nucléotides après UVA, nous ne pouvons pas exclure que d’autres formes d’oxydation de la RNR puissent affecter son activité.La présence d’azide de sodium (NaN3) au cours de l’irradiation UVA prévient le retard réplicatif, limite l’oxydation de la sous-unité R1 et la diminution du pool de dNTPs, ce qui démontre que ce retard de réplication est totalement dépendant des ROS, principalement de l’oxygène singulet généré pendant l’irradiation.L’ensemble de nos résultats indiquent que les UVA affectent le processus de réplication en modifiant non seulement la vélocité des fourches mais également l’initiation des origines de réplication. Puisqu’une perturbation de la réplication est une cause majeure d’instabilité génétique, il reste à déterminer si, dans nos conditions expérimentales, les radiations UVAfavorisent cette instabilité. Enfin, nous pensons que la ou les cibles des ROS induites par les UVA sont essentiellement cytosoliques et que le mécanisme conduisant à l’inhibition de la réplication n’est pas spécifique de ces ROS mais pourrait s’observer en utilisant d’autres types de stress oxydant. / The solar UV radiation that reaches the earth’s surface is composed of 10 % UVB (280–320 nm) and 90 % UVA (320–400 nm) the main toxic radiations (wavelengths below 300 nm) being blocked by the stratospheric ozone. Unlike UVB, the UVA component of solar radiation is weakly absorbed by DNA. Nevertheless, one of major problems due to UVA exposure is the production of reactive oxygen species (ROS) through the interaction with endogenous and exogenous chromophores. These ROS cause damage to DNA, lipids and proteins. Even if UVB remains the major etiological factor known to be implicated in photoinduced cutaneous carcinogenesis, a novel role for UVA via the production of ROS seems to emerge. In our lab, previous works have provided evidence that exposure of mammalian cells to UVA-induced ROS led to delayed S-phase and reduced DNA synthesis, by a yet unknown process, which does not require a functional DNA damage checkpoint response, despite ATM-, ATR-, p38-dependent pathways activation. The authors proposed that inhibition of DNA replication is due to impaired replication fork progression and/or origins activation, as a consequence of UVA-induced oxidative damage to proteins rather than to DNA. The project for my PhD thesis is to better understand the mechanism underlying this UVA-induced slowdown of DNA replication in human cells.To study at the molecular level the effects of UVA on DNA replication, we used the DNA combing methodology. This technique allows measurement of the fork velocity and of the origins density. We show that UVA-induced ROS inhibit immediately after irradiation, but transiently, the progression of replication forks, while the inhibition on the initiation of originslasts longer. By HPLC-MS, we show that UVA radiation induces a moderate and transient decrease of the level of each intracellular dNTP. The supply of ribonucleosides doesn’t seem to be sufficient to restore neither a normal forks velocity immediately post-UVA nor the overall slowdown of DNA replication. In addition, we observe a reversible oxidation of the subunit R1 of ribonucleotide reductase, an enzyme which is involved in dNTPs biosynthesis. This oxidation cannot explain the transient reduction of dNTPs pool after UVA exposure, but other types of RNR oxidative modification could affect its activity. During UVA irradiation, the presence of the antioxidant sodium azide (NaN3) prevents the delay of DNA replication, limits the oxidation of the subunit R1 and the decrease of dNTPs pool. These results strongly suggest that the slowdown of DNA replication totally depends on ROS, in particular on singlet oxygen production induced by UVA.Altogether, our data indicate that UVA irradiation affects the process of DNA replication by modifying the forks velocity and the activation of origins. As DNA replication impairment is a major cause of genetic instability, it is of importance to determine if UVA irradiation leads to this instability in our experimental conditions. Finally, we suspect that the target of UVAinduced ROS is essentially cytosolic and that the mechanism driving the inhibition of replication is not specific of UVA-induced ROS, but could be also observed with other types of oxidative stress.
|
4 |
Etudes fonctionnelles et biophysiques de Hug1 ; une protéine intrinsèquement désordonnée impliquée dans le métabolisme des nucléotidesMeurisse, Julie 18 September 2012 (has links) (PDF)
Face aux agressions constantes que subit l'ADN, les cellules ont développé des mécanismes de protection, nommés checkpoints pour maintenir l'intégrité de leur génome. Chez Saccharomyces cerevisiae, la kinase Rad53 joue un rôle central dans ces voies et son activation conduit à de nombreux effets cellulaires tels que le ralentissement du cycle cellulaire, le ralentissement de la réplication, l'activation de la transcription de certains gènes, l'activation de la réparation... Lors d'un crible transcriptomique, utilisant une souche exprimant une forme hyperactive de Rad53, nous avons identifié le gène HUG1 comme l'un des gènes les plus transcrits suite à l'activation de la voie RAD53. Cependant les fonctions de Hug1 demeurent énigmatiques.Pour mieux comprendre les fonctions de Hug1 dans la réponse aux dommages de l'ADN, nous avons recherché ses partenaires physiques et avons identifié les protéines Rnr2 et Rnr4, les deux composants de la petite sous-unité de la Ribonucléotide Réductase (RNR). La RNR est un complexe enzymatique qui catalyse l'étape limitante de synthèse des nucléotides. Nous avons alors cherché à caractériser cette interaction par diverses méthodes. Nous avons ainsi montré que Hug1 est une protéine intrinsèquement désordonnée capable d'interagir physiquement avec la petite sous-unité de la RNR et qu'au moins onze acides aminés de Hug1 sont impliqués dans son interaction avec la RNR. Lors de nos investigations, nous avons observé que le fait d'étiqueter Rnr2 en position C-terminale sensibilisait les souches aux stress génotoxiques et que cette sensibilité était supprimée si on abrogeait la fonction de HUG1, faisant de Hug1 un nouvel inhibiteur de la RNR. Ainsi nous sommes parvenus à proposer un modèle de régulation de la RNR par Hug1.
|
5 |
Etudes fonctionnelles et biophysiques de Hug1 ; une protéine intrinsèquement désordonnée impliquée dans le métabolisme des nucléotides / Hug1, an intrinsically disordered protein involved in nucleotide metabolism ; functional and biophysical insightsMeurisse, Julie 18 September 2012 (has links)
Face aux agressions constantes que subit l’ADN, les cellules ont développé des mécanismes de protection, nommés checkpoints pour maintenir l’intégrité de leur génome. Chez Saccharomyces cerevisiae, la kinase Rad53 joue un rôle central dans ces voies et son activation conduit à de nombreux effets cellulaires tels que le ralentissement du cycle cellulaire, le ralentissement de la réplication, l’activation de la transcription de certains gènes, l’activation de la réparation… Lors d’un crible transcriptomique, utilisant une souche exprimant une forme hyperactive de Rad53, nous avons identifié le gène HUG1 comme l’un des gènes les plus transcrits suite à l’activation de la voie RAD53. Cependant les fonctions de Hug1 demeurent énigmatiques.Pour mieux comprendre les fonctions de Hug1 dans la réponse aux dommages de l’ADN, nous avons recherché ses partenaires physiques et avons identifié les protéines Rnr2 et Rnr4, les deux composants de la petite sous-unité de la Ribonucléotide Réductase (RNR). La RNR est un complexe enzymatique qui catalyse l’étape limitante de synthèse des nucléotides. Nous avons alors cherché à caractériser cette interaction par diverses méthodes. Nous avons ainsi montré que Hug1 est une protéine intrinsèquement désordonnée capable d’interagir physiquement avec la petite sous-unité de la RNR et qu’au moins onze acides aminés de Hug1 sont impliqués dans son interaction avec la RNR. Lors de nos investigations, nous avons observé que le fait d’étiqueter Rnr2 en position C-terminale sensibilisait les souches aux stress génotoxiques et que cette sensibilité était supprimée si on abrogeait la fonction de HUG1, faisant de Hug1 un nouvel inhibiteur de la RNR. Ainsi nous sommes parvenus à proposer un modèle de régulation de la RNR par Hug1. / To maintain genome integrity, cells have developed protection mechanisms, called checkpoints, in response to DNA damage insults. In Saccharomyces cerevisiae, Rad53 protein kinase is one of the major actors in these mechanisms, and its activation triggers several cellular responses such as cell cycle delay, replication delay, transcription modifications, activation of DNA repair pathways… Using an hyperactivative allele of RAD53, we identified HUG1, as one of the most induced gene in a transcriptomic analysis upon RAD53 pathway activation. However Hug1’s functions remains elusive.To better understand Hug1’s functions in DNA damage response, we searched for physical partners and identified Rnr2 and Rnr4 proteins, which are the two small subunits of Ribonucleotide Reductase (RNR). The RNR is an enzymatic complex that catalyses nucleotide reduction, a step limiting for dNTPs synthesis. We next experimentally tackled the Hug1-RNR interaction using various methods. We showed so that Hug1 is a small intrinsically disordered protein able to interact physically with the small RNR subunit and that at least eleven amino acids in Hug1 are involved in this interaction. During our investigations, we observed that C-terminal tagging of Rnr2 sensitizes strains to genotoxics stress and that this sensitivity was suppressed when HUG1’s function is abrogated. Hence, we showed that Hug1 is a negative RNR regulator and propose a model for Hug1’s function.
|
6 |
Un criblage ciblant de nouveaux facteurs impliqués dans l’assemblage mitotique des chromosomes dans le nématode C. elegansRanjan, Rajesh 04 1900 (has links)
La division cellulaire est un processus fondamental des êtres vivants. À chaque division cellulaire, le matériel génétique d'une cellule mère est dupliqué et ségrégé pour produire deux cellules filles identiques; un processus nommé la mitose. Tout d'abord, la cellule doit condenser le matériel génétique pour être en mesure de séparer mécaniquement et également le matériel génétique. Une erreur dans le niveau de compaction ou dans la dynamique de la mitose occasionne une transmission inégale du matériel génétique. Il est suggéré dans la littérature que ces phénomènes pourraient causé la transformation des cellules cancéreuses. Par contre, le mécanisme moléculaire générant la coordination des changements de haut niveau de la condensation des chromosomes est encore incompris.
Dans les dernières décennies, plusieurs approches expérimentales ont identifié quelques protéines conservées dans ce processus. Pour déterminer le rôle de ces facteurs dans la compaction des chromosomes, j'ai effectué un criblage par ARNi couplé à de l'imagerie à haute-résolution en temps réel chez l'embryon de C. elegans. Grâce à cette technique, j'ai découvert sept nouvelles protéines requises pour l'assemblage des chromosomes mitotiques, incluant la Ribonucléotide réductase (RNR) et Topoisomérase II (topo-II). Dans cette thèse, je décrirai le rôle structural de topo-II dans l'assemblage des chromosomes mitotiques et ces mécanismes moléculaires. Lors de la condensation des chromosomes, topo-II agit indépendamment comme un facteur d'assemblage local menant par la suite à la formation d'un axe de condensation tout au long du chromosome. Cette localisation est à l'opposé de la position des autres facteurs connus qui sont impliqués dans la condensation des chromosomes. Ceci représente un nouveau mécanisme pour l'assemblage des chromosomes chez C. elegans. De plus, j'ai découvert un rôle non-enzymatique à la protéine RNR lors de l'assemblage des chromosomes. Lors de ce processus, RNR est impliqué dans la stabilité des nucléosomes et alors, permet la compaction de haut niveau de la chromatine. Dans cette thèse, je rapporte également des résultats préliminaires concernant d'autres nouveaux facteurs découverts lors du criblage ARNi. Le plus important est que mon analyse révèle que la déplétion des nouvelles protéines montre des phénotypes distincts, indiquant la fonction de celles-ci lors de l'assemblage des chromosomes. Somme toute, je conclus que les chromosomes en métaphase sont assemblés par trois protéines ayant des activités différentes d'échafaudage: topoisomérase II, les complexes condensines et les protéines centromériques. En conclusion, ces études prouvent le mécanisme moléculaire de certaines protéines qui contribuent à la formation des chromosomes mitotiques. / Cell division is a fundamental process that continuously happens in all living organisms. In each cell division, genetic material of the parent cell duplicates and segregates to produce genetically identical daughter cells in a process called mitosis. Cells need to condense their genetic material to be able to partition them equally. Any subtle defects, either timing or compaction level, could lead to the unequal inheritance of genetic material, a phenomenon that is believed to be the leading cause of cancerous transformation. However, the precise molecular mechanisms underlying the coordinated changes of higher-order chromosome structure are poorly understood.
In the last two decades, various approaches have identified several conserved factors required for chromosome condensation. To define the roles of known and novel factors in this process, I performed an RNAi based screen using high-resolution live imaging of the C. elegans one-cell embryo. Importantly, using an in vivo approach, I discovered seven novel factors required for mitotic chromosome assembly, including Ribonulceotide reducatase (RNR) and DNA topoisomerase II (topo-II). In this thesis, I report a structural role for topo-II in mitotic chromosome assembly and underlying molecular mechanisms. During chromosome condensation process, topo-II acts independently as a local assembly factor leading to global chromosome axis formation, contradicting models that chromosomes organize around preassembled scaffolds, thus representing a novel pathway for chromosome assembly in C. elegans. Furthermore, I also discovered a non-enzymatic role of RNR in the mitotic chromosome assembly process. During this process, RNR is involved in nucleosome stability, and thereby, it allows higher-order chromatin assembly. In this thesis, I also report preliminary data for other novel factors that I discovered in the RNAi based screen for factors involved in chromosome condensation. Importantly, my analyses revealed that the depletion of several proteins results in distinct chromosome condensation phenotypes, indicating that they function in discrete events during mitotic chromosome assembly. In sum, I conclude that metaphase chromosomes are built by the distinct scaffolding activities of three proteins: DNA topoisomerase II, condensin complexes and centromere proteins. Taken together, these studies provide underlying molecular mechanisms contributing to the mitotic chromosome formation.
|
Page generated in 0.0742 seconds