• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 39
  • 15
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Elucidating the role of protein cofactors in RNA catalysis using ribonuclease P as the model system

Tsai, Hsin-Yue, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 108-123).
12

Diversificação funcional em ribonucleases T2 na família Solanaceae

Corrêa, Lauís Brisolara January 2015 (has links)
As ribonucleases catalisam a clivagem do RNA e são componentes ubíquos das células, desde procariotos até eucariotos. A família T2 é a classe de RNases mais amplamente distribuída entre os organismos vivos. A ampla distribuição desta família sugere que ela deve ter um papel funcional muito importante na biologia celular destes organismos. Em Solanaceae, há basicamente dois grupos destas proteínas, um representado pelas S-RNases, as quais estão envolvidas com a rejeição do pólen na autoincompatibilidade gametofítica e um outro grupo mais diverso que é denominado de S-like RNases, com funções muito diversificadas. As S-RNases se apresentam na forma de um gene multialélico, altamente polimórfico, que está contido no lócus S. O lócus S é composto por uma combinação de proteínas SLF (S-locus F-box), responsáveis pela determinação do fator polínico, e uma S-RNase produzida apenas no pistilo, de forma que estes genes estão fortemente ligados formando o haplótipo S. Esses produtos gênicos interagem possibilitando a rejeição do auto-pólen num fenômeno denominado distinção colaborativa do pólen não próprio. No Capítulo II, foram utilizados métodos filogenéticos para determinar os principais agrupamentos de alelos na genealogia de S-RNases do gênero Solanum. A topologia da árvore não mostrou sinal filogenético para espécies, contudo, isso era esperado uma vez que a diversificação destes alelos ocorreu anteriormente à diversificação das espécies, gerando um fenômeno denominado de polimorfismos trans-específicos. Além disso, foram realizadas análises de seleção positiva, as quais encontraram um alto número de resíduos com altas probabilidades, indicando que estão sob pressão de seleção positiva darwiniana. Com o intuito de compreender a diversidade estrutural destes alelos, foram construídos modelos teóricos com base em modelagem por homologia dos principais clados da filogenia, já que estas sequências apresentam um elevado grau de polimorfismo. Os resultados mostraram grande variação estrutural na região hipervariável destas sequências, enquanto que regiões conservadas não apresentaram grandes mudanças estruturais e com estruturas secundárias características. No Capítulo III, foram realizadas diversas análises com o objetivo de compreender a diversificação estrutural e funcional de RNases T2 na família Solanaceae. As análises filogenéticas mostraram a formação de três principais grupos, sendo um de S-RNases, e os outros dois de S-like RNases. Com relação ao Clado 2, podemos inferir que houveram ao menos dois eventos de duplicação gênica. Além disso, também foram utilizados os métodos de NSsites e branch-site para inferência de seleção positiva como uma forma de identificar possíveis sinais de diversificação molecular. Muitos resíduos parecem estar sob seleção em ambos os métodos, embora um número maior fosse encontrado no NSsites (41), com estes resíduos localizando-se em regiões mais flexíveis da proteína, enquanto que os aqueles selecionados de acordo com o brach-site (8) estavam situados em posições mais rígidas da estrutura. Em súmula, os resultados encontrados nos capítulos que compreendem esta tese demonstram que análises teóricas podem contribuir efetivamente de inúmeras maneiras com o intuito de desenvolver uma melhor compreensão dos fenômenos biológicos relacionados com a evolução molecular de famílias multigênicas, além de também contribuir no entendimento dos processos de diversificação de genes multialélicos, utilizando como modelo de estudo a família gênica RNase T2. / The ribonucleases catalyze the cleavage of RNA and are ubiquitous components of cells, from prokaryotes to eukaryotes. The T2 family is the most widely category of RNases distributed among living organisms. The wide distribution of this family suggests that it should play an important functional role in cell biology of these organisms. Basically, there are two groups of these proteins in Solanaceae, one represented by SRNases, which are involved in the rejection of pollen in gametophytic self-incompatibility and a more diverse group, which is termed S-like RNases with very diverse functions. SRNases are a highly polymorphic and multiallelic gene contained in the S locus. The S locus consists of a combination of SLF proteins (F-box S-locus), responsible for the pollen factor, and one S-RNase expressed only in the pistil, and those genes are tightly linked as an S-haplotype. Products of these genes interact enabling the rejection of self-pollen in a phenomenon called collaborative non-self recognition. In Chapter II, we used phylogenetic methods to determine the main clusters of alleles in the genealogy of SRNase in the Solanum genus. The topology of the tree showed no phylogenetic sign to species delimitation, but it was expected since the diversification of these alleles occurred previously the diversification of the species, generating a phenomenon called trans-specific polymorphism. In addition, analyzes of positive selection were carried out, and it resulted in a significant number of residues with high probability, indicating they are under Darwinian positive selection. In order to understand the structural diversity of alleles, theoretical models were constructed based on homology modeling of the major clades found in the phylogeny, since it has a high degree of polymorphism in these sequences. The results showed that major structural variations are located in the hypervariable regions of these sequences, while conserved regions performed without major structural changes and showed stable secondary structures. In Chapter III, we used several analyzes to understand the structural and functional diversification of RNase T2 in the Solanaceae family. Phylogenetic analyses showed the clustering of three main groups, one with just SRNases and the two others composed by S-like RNases. Regarding to Clade 2, we could infer that at least two gene duplication events have occurred. In addition, we used two methods for inference of positive selection, NSsites and branch-site, as a mean to identify possible signals of molecular diversification. Many residues seem to be under selection in both methods, although a higher number was found in NSsites (41), and these residues were located in more flexible regions of the protein, while those selected according to the brach-site (8) were located at more rigid positions of the structure. In summary, the results found in the chapters of this thesis show that theoretical analyses could effectively contribute in many ways in order to develop a better understanding of biological phenomena related to the molecular evolution of gene families. Also, it contributes to the understanding of the processes related to multiallelic genes diversification, using gene family RNase T2 as a model.
13

Diversificação funcional em ribonucleases T2 na família Solanaceae

Corrêa, Lauís Brisolara January 2015 (has links)
As ribonucleases catalisam a clivagem do RNA e são componentes ubíquos das células, desde procariotos até eucariotos. A família T2 é a classe de RNases mais amplamente distribuída entre os organismos vivos. A ampla distribuição desta família sugere que ela deve ter um papel funcional muito importante na biologia celular destes organismos. Em Solanaceae, há basicamente dois grupos destas proteínas, um representado pelas S-RNases, as quais estão envolvidas com a rejeição do pólen na autoincompatibilidade gametofítica e um outro grupo mais diverso que é denominado de S-like RNases, com funções muito diversificadas. As S-RNases se apresentam na forma de um gene multialélico, altamente polimórfico, que está contido no lócus S. O lócus S é composto por uma combinação de proteínas SLF (S-locus F-box), responsáveis pela determinação do fator polínico, e uma S-RNase produzida apenas no pistilo, de forma que estes genes estão fortemente ligados formando o haplótipo S. Esses produtos gênicos interagem possibilitando a rejeição do auto-pólen num fenômeno denominado distinção colaborativa do pólen não próprio. No Capítulo II, foram utilizados métodos filogenéticos para determinar os principais agrupamentos de alelos na genealogia de S-RNases do gênero Solanum. A topologia da árvore não mostrou sinal filogenético para espécies, contudo, isso era esperado uma vez que a diversificação destes alelos ocorreu anteriormente à diversificação das espécies, gerando um fenômeno denominado de polimorfismos trans-específicos. Além disso, foram realizadas análises de seleção positiva, as quais encontraram um alto número de resíduos com altas probabilidades, indicando que estão sob pressão de seleção positiva darwiniana. Com o intuito de compreender a diversidade estrutural destes alelos, foram construídos modelos teóricos com base em modelagem por homologia dos principais clados da filogenia, já que estas sequências apresentam um elevado grau de polimorfismo. Os resultados mostraram grande variação estrutural na região hipervariável destas sequências, enquanto que regiões conservadas não apresentaram grandes mudanças estruturais e com estruturas secundárias características. No Capítulo III, foram realizadas diversas análises com o objetivo de compreender a diversificação estrutural e funcional de RNases T2 na família Solanaceae. As análises filogenéticas mostraram a formação de três principais grupos, sendo um de S-RNases, e os outros dois de S-like RNases. Com relação ao Clado 2, podemos inferir que houveram ao menos dois eventos de duplicação gênica. Além disso, também foram utilizados os métodos de NSsites e branch-site para inferência de seleção positiva como uma forma de identificar possíveis sinais de diversificação molecular. Muitos resíduos parecem estar sob seleção em ambos os métodos, embora um número maior fosse encontrado no NSsites (41), com estes resíduos localizando-se em regiões mais flexíveis da proteína, enquanto que os aqueles selecionados de acordo com o brach-site (8) estavam situados em posições mais rígidas da estrutura. Em súmula, os resultados encontrados nos capítulos que compreendem esta tese demonstram que análises teóricas podem contribuir efetivamente de inúmeras maneiras com o intuito de desenvolver uma melhor compreensão dos fenômenos biológicos relacionados com a evolução molecular de famílias multigênicas, além de também contribuir no entendimento dos processos de diversificação de genes multialélicos, utilizando como modelo de estudo a família gênica RNase T2. / The ribonucleases catalyze the cleavage of RNA and are ubiquitous components of cells, from prokaryotes to eukaryotes. The T2 family is the most widely category of RNases distributed among living organisms. The wide distribution of this family suggests that it should play an important functional role in cell biology of these organisms. Basically, there are two groups of these proteins in Solanaceae, one represented by SRNases, which are involved in the rejection of pollen in gametophytic self-incompatibility and a more diverse group, which is termed S-like RNases with very diverse functions. SRNases are a highly polymorphic and multiallelic gene contained in the S locus. The S locus consists of a combination of SLF proteins (F-box S-locus), responsible for the pollen factor, and one S-RNase expressed only in the pistil, and those genes are tightly linked as an S-haplotype. Products of these genes interact enabling the rejection of self-pollen in a phenomenon called collaborative non-self recognition. In Chapter II, we used phylogenetic methods to determine the main clusters of alleles in the genealogy of SRNase in the Solanum genus. The topology of the tree showed no phylogenetic sign to species delimitation, but it was expected since the diversification of these alleles occurred previously the diversification of the species, generating a phenomenon called trans-specific polymorphism. In addition, analyzes of positive selection were carried out, and it resulted in a significant number of residues with high probability, indicating they are under Darwinian positive selection. In order to understand the structural diversity of alleles, theoretical models were constructed based on homology modeling of the major clades found in the phylogeny, since it has a high degree of polymorphism in these sequences. The results showed that major structural variations are located in the hypervariable regions of these sequences, while conserved regions performed without major structural changes and showed stable secondary structures. In Chapter III, we used several analyzes to understand the structural and functional diversification of RNase T2 in the Solanaceae family. Phylogenetic analyses showed the clustering of three main groups, one with just SRNases and the two others composed by S-like RNases. Regarding to Clade 2, we could infer that at least two gene duplication events have occurred. In addition, we used two methods for inference of positive selection, NSsites and branch-site, as a mean to identify possible signals of molecular diversification. Many residues seem to be under selection in both methods, although a higher number was found in NSsites (41), and these residues were located in more flexible regions of the protein, while those selected according to the brach-site (8) were located at more rigid positions of the structure. In summary, the results found in the chapters of this thesis show that theoretical analyses could effectively contribute in many ways in order to develop a better understanding of biological phenomena related to the molecular evolution of gene families. Also, it contributes to the understanding of the processes related to multiallelic genes diversification, using gene family RNase T2 as a model.
14

Diversificação funcional em ribonucleases T2 na família Solanaceae

Corrêa, Lauís Brisolara January 2015 (has links)
As ribonucleases catalisam a clivagem do RNA e são componentes ubíquos das células, desde procariotos até eucariotos. A família T2 é a classe de RNases mais amplamente distribuída entre os organismos vivos. A ampla distribuição desta família sugere que ela deve ter um papel funcional muito importante na biologia celular destes organismos. Em Solanaceae, há basicamente dois grupos destas proteínas, um representado pelas S-RNases, as quais estão envolvidas com a rejeição do pólen na autoincompatibilidade gametofítica e um outro grupo mais diverso que é denominado de S-like RNases, com funções muito diversificadas. As S-RNases se apresentam na forma de um gene multialélico, altamente polimórfico, que está contido no lócus S. O lócus S é composto por uma combinação de proteínas SLF (S-locus F-box), responsáveis pela determinação do fator polínico, e uma S-RNase produzida apenas no pistilo, de forma que estes genes estão fortemente ligados formando o haplótipo S. Esses produtos gênicos interagem possibilitando a rejeição do auto-pólen num fenômeno denominado distinção colaborativa do pólen não próprio. No Capítulo II, foram utilizados métodos filogenéticos para determinar os principais agrupamentos de alelos na genealogia de S-RNases do gênero Solanum. A topologia da árvore não mostrou sinal filogenético para espécies, contudo, isso era esperado uma vez que a diversificação destes alelos ocorreu anteriormente à diversificação das espécies, gerando um fenômeno denominado de polimorfismos trans-específicos. Além disso, foram realizadas análises de seleção positiva, as quais encontraram um alto número de resíduos com altas probabilidades, indicando que estão sob pressão de seleção positiva darwiniana. Com o intuito de compreender a diversidade estrutural destes alelos, foram construídos modelos teóricos com base em modelagem por homologia dos principais clados da filogenia, já que estas sequências apresentam um elevado grau de polimorfismo. Os resultados mostraram grande variação estrutural na região hipervariável destas sequências, enquanto que regiões conservadas não apresentaram grandes mudanças estruturais e com estruturas secundárias características. No Capítulo III, foram realizadas diversas análises com o objetivo de compreender a diversificação estrutural e funcional de RNases T2 na família Solanaceae. As análises filogenéticas mostraram a formação de três principais grupos, sendo um de S-RNases, e os outros dois de S-like RNases. Com relação ao Clado 2, podemos inferir que houveram ao menos dois eventos de duplicação gênica. Além disso, também foram utilizados os métodos de NSsites e branch-site para inferência de seleção positiva como uma forma de identificar possíveis sinais de diversificação molecular. Muitos resíduos parecem estar sob seleção em ambos os métodos, embora um número maior fosse encontrado no NSsites (41), com estes resíduos localizando-se em regiões mais flexíveis da proteína, enquanto que os aqueles selecionados de acordo com o brach-site (8) estavam situados em posições mais rígidas da estrutura. Em súmula, os resultados encontrados nos capítulos que compreendem esta tese demonstram que análises teóricas podem contribuir efetivamente de inúmeras maneiras com o intuito de desenvolver uma melhor compreensão dos fenômenos biológicos relacionados com a evolução molecular de famílias multigênicas, além de também contribuir no entendimento dos processos de diversificação de genes multialélicos, utilizando como modelo de estudo a família gênica RNase T2. / The ribonucleases catalyze the cleavage of RNA and are ubiquitous components of cells, from prokaryotes to eukaryotes. The T2 family is the most widely category of RNases distributed among living organisms. The wide distribution of this family suggests that it should play an important functional role in cell biology of these organisms. Basically, there are two groups of these proteins in Solanaceae, one represented by SRNases, which are involved in the rejection of pollen in gametophytic self-incompatibility and a more diverse group, which is termed S-like RNases with very diverse functions. SRNases are a highly polymorphic and multiallelic gene contained in the S locus. The S locus consists of a combination of SLF proteins (F-box S-locus), responsible for the pollen factor, and one S-RNase expressed only in the pistil, and those genes are tightly linked as an S-haplotype. Products of these genes interact enabling the rejection of self-pollen in a phenomenon called collaborative non-self recognition. In Chapter II, we used phylogenetic methods to determine the main clusters of alleles in the genealogy of SRNase in the Solanum genus. The topology of the tree showed no phylogenetic sign to species delimitation, but it was expected since the diversification of these alleles occurred previously the diversification of the species, generating a phenomenon called trans-specific polymorphism. In addition, analyzes of positive selection were carried out, and it resulted in a significant number of residues with high probability, indicating they are under Darwinian positive selection. In order to understand the structural diversity of alleles, theoretical models were constructed based on homology modeling of the major clades found in the phylogeny, since it has a high degree of polymorphism in these sequences. The results showed that major structural variations are located in the hypervariable regions of these sequences, while conserved regions performed without major structural changes and showed stable secondary structures. In Chapter III, we used several analyzes to understand the structural and functional diversification of RNase T2 in the Solanaceae family. Phylogenetic analyses showed the clustering of three main groups, one with just SRNases and the two others composed by S-like RNases. Regarding to Clade 2, we could infer that at least two gene duplication events have occurred. In addition, we used two methods for inference of positive selection, NSsites and branch-site, as a mean to identify possible signals of molecular diversification. Many residues seem to be under selection in both methods, although a higher number was found in NSsites (41), and these residues were located in more flexible regions of the protein, while those selected according to the brach-site (8) were located at more rigid positions of the structure. In summary, the results found in the chapters of this thesis show that theoretical analyses could effectively contribute in many ways in order to develop a better understanding of biological phenomena related to the molecular evolution of gene families. Also, it contributes to the understanding of the processes related to multiallelic genes diversification, using gene family RNase T2 as a model.
15

NMR studies on barnase and barstar

Lubienski, Michael J. January 1994 (has links)
No description available.
16

Understanding retroviral replication roles of nucleocapsid and RNase H during reverse transcription in vivo /

Zhang, Wen-Hui. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains x, 200 p. : ill. Vita. Includes abstract. Includes bibliographical references.
17

The Reduction of the Disulfide Bonds of Ribonuclease

Steiner, Lisa Amelia 06 June 2011 (has links)
An investigation has been made of the role of the four disulfide bonds of bovine pancreatic ribonuclease in maintaining the protein in a biologically active form. Studies were carried out to determine the effect of reductive cleavage of these bonds on the ability of the enzyme to catalyze the hydrolysis of ribonucleic acid. The appearance of sulfhydryl groups was taken as evidence that reduction of the protein had occurred. <P> No significant reduction or loss of enzymic activity of ribonuclease could be demonstrated when the protein was treated with the reducing agents sodium or potassium borohydride in aqueous solution at room temperature,pH 8. <P> Thioglycolic acid was found to be an effective agent for reducing ribonuclease disulfide bonds. At room temperature, in an aqueous solution containing a Large excess of thioglycolate over protein, reduction proceeded slowly at pH 8. At the end of five hours, approximately one disulfide bond was broken, with the loss of 20 per cent of the original enzyme activity. The addition of urea greatly facilitated reduction. The rate of reduction was especially rapid in solutions of urea concentration greater than 4 molar. In 8 M urea at pH 8, treatment of ribonuclease with thioglycolate resulted in the complete loss of enzymic activity in one half hour, with the simultaneous rupture of two or three disulfide bonds. Under these conditions, maximum reduction was achieved in approximately two hours, with cleavage of between three and four disulfide bonds per molecule. In the pH range from 3 to 10, rate of activity loss was most rapid at pH 10, slightly less rapid at pH 3, and reached a minimum near pH 5. The effects of pH and urea were additive in that the maximum rate of inactivation occurred at pH 10 in 8 M urea (97 per cent activity loss in 10 minutes), and the minimum rate st pH 5 in the absence of urea (20 per cent loss in 28 hours). <P> Inactivation was markedly inhibited by phosphate ions. A solution of protein which was O.36 M in phosphate at pH 8 lost activity very slowly when treated with thioglycolic acid, even in the presence of 4 M urea. These findings, together with the observation of other workers that polyvalent ions such as phosphate reverse the denaturetion of ribonuclease in urea, suggest that phosphate inhibits reduction by stabilizing the protein in its native configuration, whereas urea facilitates reduction by denaturing the protein. <P> Air oxidation of fully or partially inactivated protein resulted, in some cases, in the recovery of up to 4O per cent of the enzyme activity which had been lost as a result of reduction. <P> The relation between loss of activity and reduction was analyzed by correlating the data obtained in those experiments in which both the sulfhydryl concentration and the enzymic activity of samples of modified protein were determined. The experiments were carried out under a variety of conditions of pH and urea concentration. On the basis of these data, it is concluded that the inactivation of thioglycolate-treated ribonuclease is probably not a unique function of extent of reduction, but depends in part on the method by which the reduction is achieved.
18

Role of RNase activity in interspecific pollen rejection in Nicotiana

Beecher, Brian Stuart, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 246-266). Also available on the Internet.
19

The effect of a buttress module on the stability and the function of Ribonuclease P from Bacillus subtilis /

Qin, Hong. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Biochemistry and Molecular Biology, 2001. / Includes bibliographical references. Also available on the Internet.
20

The novel ugagau hexaloop RNA structure, dipolar coupling refinement, and transactivation /

Leeper, Thomas January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.

Page generated in 0.2142 seconds