• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 23
  • 16
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Exploring the Riemann Hypothesis

Henderson, Cory 28 June 2013 (has links)
No description available.
22

Explicit sub-Weyl Bound for the Riemann Zeta Function

Patel, Dhir January 2021 (has links)
No description available.
23

Analysis in fractional calculus and asymptotics related to zeta functions

Fernandez, Arran January 2018 (has links)
This thesis presents results in two apparently disparate mathematical fields which can both be examined -- and even united -- by means of pure analysis. Fractional calculus is the study of differentiation and integration to non-integer orders. Dating back to Leibniz, this idea was considered by many great mathematical figures, and in recent decades it has been used to model many real-world systems and processes, but a full development of the mathematical theory remains incomplete. Many techniques for partial differential equations (PDEs) can be extended to fractional PDEs too. Three chapters below cover my results in this area: establishing the elliptic regularity theorem, Malgrange-Ehrenpreis theorem, and unified transform method for fractional PDEs. Each one is analogous to a known result for classical PDEs, but the proof in the general fractional scenario requires new ideas and modifications. Fractional derivatives and integrals are not uniquely defined: there are many different formulae, each of which has its own advantages and disadvantages. The most commonly used is the classical Riemann-Liouville model, but others may be preferred in different situations, and now new fractional models are being proposed and developed each year. This creates many opportunities for new research, since each time a model is proposed, its mathematical fundamentals need to be examined and developed. Two chapters below investigate some of these new models. My results on the Atangana-Baleanu model proposed in 2016 have already had a noticeable impact on research in this area. Furthermore, this model and the results concerning it can be extended to more general fractional models which also have certain desirable properties of their own. Fractional calculus and zeta functions have rarely been united in research, but one chapter below covers a new formula expressing the Lerch zeta function as a fractional derivative of an elementary function. This result could have many ramifications in both fields, which are yet to be explored fully. Zeta functions are very important in analytic number theory: the Riemann zeta function relates to the distribution of the primes, and this field contains some of the most persistent open problems in mathematics. Since 2012, novel asymptotic techniques have been applied to derive new results on the growth of the Riemann zeta function. One chapter below modifies some of these techniques to prove asymptotics to all orders for the Hurwitz zeta function. Many new ideas are required, but the end result is more elegant than the original one for Riemann zeta, because some of the new methodologies enable different parts of the argument to be presented in a more unified way. Several related problems involve asymptotics arbitrarily near a stationary point. Ideally it should be possible to find uniform asymptotics which provide a smooth transition between the integration by parts and stationary phase methods. One chapter below solves this problem for a particular integral which arises in the analysis of zeta functions.
24

Neue Herleitung und explizite Restabschätzung der Riemann-Siegel-Formel / Derivation of the Riemann-Siegel formula with explicit estimates of its remainders

Gabcke, Wolfgang 15 February 1979 (has links)
Die asymptotische Entwicklung der Funktion \(Z(t)=e^{i\vartheta(t)}\zeta{(1/2+it)}\) für reelle \(t\to+\infty\) (dabei ist \(\vartheta(t)=\Im\log{\Gamma{(1/4+it/2)}}-(t\log{\pi})/2\) und \(\zeta{(1/2+it)}\) die Riemannsche Zetafunktion auf der kritischen Geraden $\Re{(s)}=1/2$ – heute allgemein als Riemann–Siegel–Formel bezeichnet – wird auf neue Weise mit Hilfe der Sattelpunktmethode aus der sogenannten Riemann–Siegel"–Integralformel hergeleitet. Die Formeln zur Berechnung der in der asymptotischen Reihe auftretenden Koeffizienten werden vereinfacht und für \(t \ge 200\) explizite Fehlerabschätzungen für die ersten 11 Partialsummen dieser Reihe angegeben. Der tabellarische Anhang enthält u. a. die exakte Darstellung der ersten 13 Koeffizienten der asymptotischen Reihe in der auf D. H. Lehmer zurückgehenden Form sowie die Potenzreihenentwicklungen und die Entwicklungen nach Tschebyscheffschen Polynomen 1. Art der ersten 11 Koeffizienten mit einer Genauigkeit von 50 Dezimalstellen.
25

Quantum gate teleportation, universal entanglers and connections with the number theory / TeleportaÃÃo de portas quÃnticas, entrelaÃadores universais e conexÃes com a teoria de nÃmeros

Fernando Vasconcelos Mendes 19 February 2015 (has links)
The present thesis can be divided in three parts: 1) Quantum gate teleportation; 2) Numerical search of universal entanglers; 3) Connections between quantum information and number theory. Regarding the quantum gate teleportation, a separability criterion of normal matrices is used to find the analytical conditions of the preservation of separability under conjugation. That analytical condition allowed to find the general formula of an element of $mathbb{C}^{4}$ Clifford group, as well to understand the role of the basis of measurement in the quantum gate teleportation protocol. Considering the searching for universal entanglers, the same separability criterion of normal matrices was used as fitness function in a computational heuristics, in prder to find good candidates for universal entanglers in $mathbb{C}^{3} otimes mathbb{C}^{4}$ and $mathbb{C}^{4} otimes mathbb{C}^{4}$ Hilbert spaces. At last, in the connection of quantum information with the number theory, it is presented the study of the preparation and entanglement of several multi-qubit quantum states based in integer sequences, and the Riemannian quantum circuit, a quantum circuit whose eigenvalues are related to the zeros of the Riemann zeta function. The existence of such circuit proves that is always possible to construct a physical system related to a finite amount of zeros. / A presente tese està dividida em trÃs partes: 1) TeleportaÃÃo de portas quÃnticas; 2) Busca numÃrica por entrelaÃadores universais; 3) ConexÃes entre a informaÃÃo quÃntica e a teoria dos nÃmeros. No que diz a teleportaÃÃo de portas quÃnticas, um critÃrio de separabilidade para matrizes normais à usada para encontrar as condiÃÃes analÃticas da preservaÃÃo da separabilidade sob conjugaÃÃo. Tais condiÃÃes analÃticas permitiram encontrar a forma geral de um elemento do grupo de Clifford em $mathbb{C}^{4}$, assim como tambÃm entender o papel da base de mediÃÃo no protocolo de teleportaÃÃo de portas quÃnticas. Considerando a busca por entrelaÃadores universais, o mesmo critÃrio de separabilidade de matrizes normais foi utilizado como funÃÃo de aptidÃo em uma heurÃstica computacional aplicada para encontrar bons candidatos a entrelaÃadores universais nos espaÃos de Hilbert de dimensÃes $mathbb{C}^{3} otimes mathbb{C}^{4}$ e $mathbb{C}^{4} otimes mathbb{C}^{4}$. Por fim, sobre as conexÃes da informaÃÃo quÃntica com a teoria dos nÃmeros, à apresentado um estudo da preparaÃÃo e entrelaÃamento de vÃrios estados quÃnticos de mÃltiplos qubits baseados em sequÃncias de nÃmeros inteiros. Apresenta-se ainda o circuito quÃntico Riemanniano, um circuito quÃntico cujos autovalores sÃo relacionados aos zeros da funÃÃo Zeta de Riemann. A existÃncia deste circuito prova que à sempre possÃvel construir um sistema fÃsico relacionado a uma quantidade finita de zeros.
26

On the Theory of Zeta-functions and L-functions

Awan, Almuatazbellah 01 January 2015 (has links)
In this thesis we provide a body of knowledge that concerns Riemann zeta-function and its generalizations in a cohesive manner. In particular, we have studied and mentioned some recent results regarding Hurwitz and Lerch functions, as well as Dirichlet's L-function. We have also investigated some fundamental concepts related to these functions and their universality properties. In addition, we also discuss different formulations and approaches to the proof of the Prime Number Theorem and the Riemann Hypothesis. These two topics constitute the main theme of this thesis. For the Prime Number Theorem, we provide a thorough discussion that compares and contrasts Norbert Wiener's proof with that of Newman's short proof. We have also related them to Hadamard's and de la Vallee Poussin's original proofs written in 1896. As far as the Riemann Hypothesis is concerned, we discuss some recent results related to equivalent formulations of the Riemann Hypothesis as well as the Generalized Riemann Hypothesis.
27

On the distribution of polynomials having a given number of irreducible factors over finite fields

Datta, Arghya 08 1900 (has links)
Soit q ⩾ 2 une puissance première fixe. L’objectif principal de cette thèse est d’étudier le comportement asymptotique de la fonction arithmétique Π_q(n,k) comptant le nombre de polynômes moniques de degré n et ayant exactement k facteurs irréductibles (avec multiplicité) sur le corps fini F_q. Warlimont et Car ont montré que l’objet Π_q(n,k) est approximativement distribué de Poisson lorsque 1 ⩽ k ⩽ A log n pour une constante A > 0. Plus tard, Hwang a étudié la fonction Π_q(n,k) pour la gamme complète 1 ⩽ k ⩽ n. Nous allons d’abord démontrer une formule asymptotique pour Π_q(n,k) en utilisant une technique analytique classique développée par Sathe et Selberg. Nous reproduirons ensuite une version simplifiée du résultat de Hwang en utilisant la formule de Sathe-Selberg dans le champ des fonctions. Nous comparons également nos résultats avec ceux analogues existants dans le cas des entiers, où l’on étudie tous les nombres naturels jusqu’à x avec exactement k facteurs premiers. En particulier, nous montrons que le nombre de polynômes moniques croît à un taux étonnamment plus élevé lorsque k est un peu plus grand que logn que ce que l’on pourrait supposer en examinant le cas des entiers. Pour présenter le travail ci-dessus, nous commençons d’abord par la théorie analytique des nombres de base dans le contexte des polynômes. Nous introduisons ensuite les fonctions arithmétiques clés qui jouent un rôle majeur dans notre thèse et discutons brièvement des résultats bien connus concernant leur distribution d’un point de vue probabiliste. Enfin, pour comprendre les résultats clés, nous donnons une discussion assez détaillée sur l’analogue de champ de fonction de la formule de Sathe-Selberg, un outil récemment développé par Porrit et utilisons ensuite cet outil pour prouver les résultats revendiqués. / Let q ⩾ 2 be a fixed prime power. The main objective of this thesis is to study the asymptotic behaviour of the arithmetic function Π_q(n,k) counting the number of monic polynomials that are of degree n and have exactly k irreducible factors (with multiplicity) over the finite field F_q. Warlimont and Car showed that the object Π_q(n,k) is approximately Poisson distributed when 1 ⩽ k ⩽ A log n for some constant A > 0. Later Hwang studied the function Π_q(n,k) for the full range 1 ⩽ k ⩽ n. We will first prove an asymptotic formula for Π_q(n,k) using a classical analytic technique developed by Sathe and Selberg. We will then reproduce a simplified version of Hwang’s result using the Sathe-Selberg formula in the function field. We also compare our results with the analogous existing ones in the integer case, where one studies all the natural numbers up to x with exactly k prime factors. In particular, we show that the number of monic polynomials grows at a surprisingly higher rate when k is a little larger than logn than what one would speculate from looking at the integer case. To present the above work, we first start with basic analytic number theory in the context of polynomials. We then introduce the key arithmetic functions that play a major role in our thesis and briefly discuss well-known results concerning their distribution from a probabilistic point of view. Finally, to understand the key results, we give a fairly detailed discussion on the function field analogue of the Sathe-Selberg formula, a tool recently developed by Porrit and subsequently use this tool to prove the claimed results.
28

Extremes of log-correlated random fields and the Riemann zeta function, and some asymptotic results for various estimators in statistics

Ouimet, Frédéric 05 1900 (has links)
No description available.

Page generated in 0.0656 seconds