• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • Tagged with
  • 20
  • 20
  • 15
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation and characterisation of new organometallic polymers and encapsulated polymers

Young, Robert Anthony January 1999 (has links)
No description available.
2

Chemical Synthesis and Ionic Conductivity of Water-SolubleRigid-Rod and Articulated Rigid-Rod Solid Polyelectrolytes

Sun, Ju-Pin 13 July 2001 (has links)
ABSTRACT A water-soluble rigid-rod polyelectrolyte sPBI-PS(Li+) could be doped with LiI and cast as a freestanding film from aqueous solution showing a room-temperature in-plane DC conductivity (s|| ) of 8.3¢®10-3 S/cm. However, the cast film assumed an anisotropic microstructure due to preferential orientation of the rigid-rod backbone leading to an out-of-the plane DC conductivity (s^) which was three orders smaller than those of the s||, and severely limited its applications as a solid polyelectrolyte for thin-film battery. In addition to synthesizing rigid-rod polyelectrolyte sPBI-PS(Li+) for comparison, this study used 2-sulfo-terephthalic acid and isophthalic acid in ratios of 15¡G1, 25¡G1, or 50¡G1 for copolycondensation reaction making the rigid-rod backbone of sPBI-PS(Li+) become articulated. Further reaction with 1,3-propanesultone pendants, the rigid-rod polyelectrolyte was changed into a new water-soluble articulated rigid-rod polyelectrolyte A-sPBI-PS(Li+). Various analyses were applied to ascertain chemical structure, purities, thermal properties and molecular weight of synthesized monomers and polymers. Freestanding films of sPBI-PS(Li+) and A-sPBI-PS(Li+) were cast from aqueous solutions doped with LiI, LiBF4, or LiCF3SO3 for various concentrations up to 5 wt.%. Thin-film room-temperature s|| of sPBI-PS(Li+) could be 3.15´10-3 S/cm, and of A-sPBI-PS(Li+) could be 2.76´10-3 S/cm. X-ray scattering and electron microscopic results suggested that the sPBI-PS(Li+) cast film was in-plane isotropic but out-of-the plane anisotropic, and the A-sPBI-PS(Li+) cast film was three-dimensionally isotropic.
3

Chemical Synthesis and Ionic Conductivity of Water-Soluble Articulated Rigid-Rod Solid Polyelectrolytes

Chen, Chien-Chang 30 June 2003 (has links)
A water-soluble rigid-rod polyelectrolyte sPBI-PS(Li+) could be doped with LiI and cast as a freestanding film from aqueous solution showing a room-temperature in-plane DC conductivity (
4

Ionic Conductivity and Electrochemical s Reactions of Rigid-Rod Solid Polyelectrolytes

Lin, Chia-Hung 14 July 2003 (has links)
ABSTRACT sPBI is a heterocyclic aromatic polymer assuming a para- catenated backbone yielding a rod-like configuration. Because of its rigidity, this rod-like molecule displays superior mechanical tenacity, thermo-oxidative stability, and solvent resistance. It is also the precursor of rigid-rod solid polyelectrolyte exhibiting high solubility and superior ionic conductivity. Isotropic solution were prepared by dissolving sPBI in distilled methanesulfonic acid containing 0.0, 0.989, 4.76, 9.09, 15.0, 20.0, 23.1 wt. % lithium ion of dopants of LiCF3SO3 or LiN(CF3SO2)2. The room-temperature DC conductivity of sPBI cast film doped with 15.0 wt. % LiN(CF3SO2)2 parallel (
5

Chemical Synthesis and Ionic Conductivity of Water-Soluble Articulated Rigid-Rod Polyelectrolytes Derivatized with Sulfonated Ionomer Pendants

Du, Yue-Lin 15 February 2005 (has links)
Articulated rigid-rod polymers asPBI were synthesized via polycondensation reaction. Using 2-sulfoterephthalic acid and 5-sulfoisophthalic acid in different ratios for copolycondensation reaction making the fully conjugated rigid-rod backbone became articulated. Both rigid-rod and articulated rigid-rod were further derivatized using alkane sulfonated pendants and became water-soluble rigid-rod and articulated rigid-rod polyelectrolytes. Lithium salt doped cast films of the polyelectrolytes showed a root-temperature DC conductivity parallel to film surface (
6

The synthesis and analysis of water soluble rigid-rod polyelectrolyte

Kuo, Chien-Hung 01 August 2000 (has links)
Development of opto-electronic polymers has been focused on conjugated rigid-rod polymers which assume a para-catenated backbone yielding a rod-like configuration. As a consequence of their rigidity, the rod-like molecules display superior mechanical properties, thermo-oxidative stability and solvent resistance. The later two characters cause difficulties in processing these high-performance rigid-rod polymers. This in terms limits their applications in critical technologies, such as conducting polymers, nonlinear optics, and solid polyelectrolytes. In this study, chemical derivatives of the rigid-rod polymers were synthesized using pendants of propane-sulfonated ionomers to (1) enhance the solubility of the rigid-rod polymers, and (2) generate a solid polyelectrolyte suitable for energy storage. Extensive synthesis efforts were focused on generating monomers and polymers of propane-sulfonated poly(p-phenylene-benzobisimidazole), PBI, making it a water soluble electrolyte. Various analysis techniques were applied to ascertain the chemical structure and the purity of the monomers and of the polymers. The polymer molecular weight was also determined using viscometry. An intrinsic viscosity of 4.9 dL/g was achieved for the 2-sulfo-PBI and of 0.58 dL/g for the propane-sulfonated PBI with Na+ ionomer pendants
7

Aspect Ratio Modulations of Fully Conjugated Rod-like Polymer Electrolyte for Enhanced Three-dimensionally Isotropic Ionic Conductivity

Wang, Jia-Huei 02 October 2009 (has links)
This study utilized polycondensation reaction to synthesize fully conjugated rod-like polymer dihydroxy-PBI. Chemical derivatizations were applied to attach pendants of propane sulfonic coil for dihydroxy-PBI-PS and to attach aromatic phenylene ring with Li ionic moiety for dihydroxy-PBI-AS. The attachment of pendants for dihydroxy-PBI-PS was 42.27 % and for dihydroxy-PBI-AS was only for 0.04 % causing by stereo hindrance of this molecule. These polymers seemed to have good thermal stability. Dihydroxy-PBI started to show degradation at 467.8 oC and retained 60.5 wt. % at 800 oC. Derivatized dihydroxy- PBI-PS and dihydroxy-PBI-AS lost their pendants at 295.3 oC and 314.4 oC, respectively. Dihydroxy-PBI was cast into thin film. Upon doping with lithium salt of LiClO at 2.02 wt. %, dihydroxy-PBI cast film showed the highest room-temperature dc conductivity parallel to the film (£m¡ü) of 1.71 x 10-4 S/cm and perpendicular to the film (£m¡æ) of 1.49 x 10-5 S/cm. For dihydroxy-PBI-PS cast film, the highest conductivity was at 0.49 wt. % of LiClO4 with £m¡ü of 1.05 x 10-3 S/cm and £m¡æ of 1.05 x 10-4 S/cm. For dihydroxy-PBI-AS cast film, the highest conductivity was at 2.02 wt. % of LiClO4 with £m¡ü of 1.32 x 10-3 S/cm and £m¡æ of 2.26 x 10-5 S/cm. From scanning electron microscopy and wide-angle x-ray scattering, it was learned that cast films of dihydroxy-PBI and dihydroxy-PBI-AS had anisotropic layered structure parallel to the film, and that of dihydroxy-PBI-PS showed less of this anisotropy.
8

Electroluminescence of Layer Thickness, Carbon Nano-particle Dopants, and Percolation Threshold Electric Conductivity of Fully Conjugated Rigid-rod Polymer

Chang, Chih-hao 02 July 2010 (has links)
Polymer light emitting diodes (PLED) were using a heterocyclic aromatic rigid-rod polymer poly-p-phenylene-benzobisoxazole (PBO) as an opto-electronically active layer; and poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) as a hole transporting layer. Aluminum (Al) and indium tin oxide (ITO) were served as device cathode and anode, respectively. [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) or derivatized multi-wall carbon nano-tube (MWCNT-C18), with great electron transporting ability, was doped into PBO to enhance the performance of PLED devices as well as the thin-film electrical conductivity. The optical length was changed by using different spin coating speeds and durations. From the research, the £fmax of electroluminescence (EL) was blue-shifted as PEDOT:PSS spin coating speed increased for a thinner layer. Once using a higher spin coating speed repeatedly to coat PEDOT:PSS, the £fmax of electroluminescence was red-shifted. If the PEDOT:PSS film thicknesses were similar, the EL spectra were almost the same, independent of device processing scheme. The injection current and EL intensity were enhanced by doping PC61BM or MWCNT- C18. The electric conductivity parallel to film surface (£m¡ü) was increased as the doping concentration increased. Because of the extremely different aspect ratio, the MWCNT-C18 had a lower percolation threshold concentration. Therefore, at a low MWCNT-C18 doping concentration, the injection current and the EL intensity were enhanced compared with those of PC61BM.
9

Synthesis and Characterization of Benzobisthiazole Derived Polymers

Chen, Chien-Fan 29 March 2004 (has links)
In this study, two series of polymers based on benzobisthiazole were synthesized. The poly(benzobisthiazoles) (PBTs) have been synthesized by the solution polycondensation of 2,5-diamino-1,4-benzenedithiol in poly(phosphoric acid)s (PPA). The diacids used were systematically varied to find the best for the solubilization of the aromatic heterocyclic rigid-rod polymers. The role of PPA is identified and the effects of phosphorous pentoxide and water on PBT during polycondensation are discussed. Polymer properties such as the inherent viscosity, decomposition temperature are correlated to systematically varied diacids. Finally, the effect of diacid architecture on the synthesis and microstructure of PBT is studied. The results are further discussed in terms of resonance, symmetry, and solubilization of the diacids. Next, we extend the rigidity and resonance of benzobisthiazole for the application as second-order nonlinear optics. Novel nonlinear optical (NLO) polyimides containing benzobisthiazole chromophores have been synthesized. The soluble polyimides containing different ratios of carboxylic acids (COOH) were first prepared and the precursors of NLO chromophores reacted with those carboxylic acids, followed by the benzobisthiazole derived chromophores synthesized at 300 oC under vaccum. The formation of benzobisthiazole was evidenced by FTIR and UV-vis spectra in combination with the analysis of model polyimides. The excellent thermal properties of those NLO polyimides were examined by TGA and TMA. PI-1 shows thermal decomposition temperature as high as 554 oC at 10 wt % loss and a Tg of 324 oC. The amorphous morphology of those polyimides was verified by XRD traces and some ordered alignments were found, due to the rigidity of the benzobisthiazole derivatize chromophores. The electrooptic coefficient of PI-1 (r33 = 5.3 pm/V) was obtained.
10

Package of Homojunction of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymer Light Emitting Diodes

Liao, Hung-chi 20 July 2004 (has links)
The focus of this study is mono-layer polymer light emitting diode (PLED). The emitting layer is poly-p-phenylenebenzobisoxazole (PBO). PBO is a fully conjugated heterocyclic aromatic rigid-rod polymer. Anode is indium-tin-oxide (ITO). Cathode is aluminum (Al). We used UV epoxy resin to package PLED devices, then measured current-voltage response, electroluminescence (EL) emission, and device lifetime. We demonstrate that the packaged mono-layer PBO LED reduced its demise from water and oxygen. Device lifetime increased from 1 hour to several hundred hours. At a larger bias voltage or current, emission intensity and device efficiency became higher. But decay rate increased leading to shortened device lifetime. Device temperature appeared linearly with current density. A red shift of the EL emission was observed. The £fmax. of emission spectra moved from 534 nm (initial) to 582 nm (after 100 hrs). After thermal annealing at 120¢J for ten hours, threshold voltage increased from 5 V to 12 V, current density decreased to several 10 mA/cm2, luminous intensity improved several ten times to 10-2 cd/m2, emission color changed from yellow-green to orange, luminous efficiency improved from 10-7 to 10-4 cd/A, but device lifetime declined to less than 20 hrs.

Page generated in 0.0676 seconds