• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 20
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Self-Condensing Ring-Opening Metathesis Polymerization

Almuzaini, Hanan Nasser 25 May 2023 (has links)
Ring-opening metathesis polymerization (ROMP) is a great tool for synthesizing polyolefin materials with different topologies, including hyperbranched polymers—polymers with high degrees of branching and many end groups. However, hyperbranched polymer synthesis via ROMP is challenging due to multifunctional-monomer or multi-polymerization requirements. To simplify the synthesis of hyperbranched ROMP polymers, we developed a new synthetic approach: Self-condensing ROMP. The self-condensing ROMP approach involves a ROMP initiator modification to attach a ROMP-polymerizable group (a ROMP monomer), producing a ROMP "inimer" (initiator + monomer). The ROMP inimer initiates the polymerization and becomes a branching unit in the polymer structure, resulting in single-step hyperbranched polymer synthesis. The key challenge is controlling of this approach the ROMP initiator reactivity to avoid initiating polymerization during the ROMP inimer synthesis. Well-defined ruthenium-based olefin metathesis catalysts are common ROMP initiators due to their high stability, reactivity, and functional group tolerance. Thus, we studied the olefin metathesis catalyst activation temperature to enable ROMP initiator-monomer coupling. Based on the catalyst activity, we designed and synthesized a series of ROMP inimers. Then, we synthesized hyperbranched polymers via self-condensing ROMP. The characterization of hyperbranched polymers indicated the effect of branching density on the physical properties of the polymer. This approach introduced a new class of olefin metathesis complexes, ROMP inimers, containing both the initiator and propagating center. This approach provides a way to synthesize hyperbranched polymers from any known ROMP monomers in a single step. This dissertation also includes the synthesis and characterization of a bimetallic Ru complex that could directly synthesize cyclic polyolefin. We also include the synthesis and characterization of copper-ruthenium bimetallic olefin metathesis catalysts. / Doctor of Philosophy / Hyperbranched polymers are a class of polymers having highly branching structures and functional end-groups, and presenting distinct physical and chemical properties compared with linear polymers. Hyperbranched polymers have been used for many applications including processing additives, cross-linkers, compatibilizers, and catalyst supports. Well-defined ruthenium-based olefin metathesis catalysts enable the synthesis of materials with different topologies, functionalities, and chemical and physical properties via ring-opining metathesis polymerization (ROMP). Ligand modifications on ruthenium catalysts have been applied to improve the catalyst stability and reactivity. However, this dissertation modifies olefin metathesis catalysts to synthesize hyperbranched polymers in a single step. This dissertation illustrates catalyst functionalization with a ROMP monomer moiety to synthesize a ROMP inimer (inimer= initiator + monomer). The ROMP initiator—olefin metathesis catalyst—and ROMP monomer coupling produces an "inimer". The inimer can undergo self-condensing ROMP with a ROMP monomer addition to synthesize hyperbranched polymers. This approach introduced a new class of olefin metathesis complexes containing both the initiator and propagating center. This approach also provides a way to synthesize hyperbranched polymers from any known ROMP monomers in a single step.
12

Synthesis of Bio-Based Polymers Containing D-Isosorbide by Ring-Opening Metathesis Polymerization

Yalamanchili, Chinni 17 May 2014 (has links)
The utilization of renewable sources as alternatives for petroleum and natural gas products has immense commercial, health and global warming significance. D-Isosorbide (2) is a bifunctional, polar, chiral and rigid molecule, which is produced from renewable sources. Synthesis of new polymers containing 2 is of interest for polymers and in drug delivery. The aim of the present work is to synthesize various polymers (homo- and copolymers) containing 2 via the olefin metathesis routes, ring-opening metathesis polymerization (ROMP) and acyclic-diene metathesis polymerization (ADMET). N-Phenyl-7-oxanorbornene-dicarboximide, and norbornene functionalized onto 2 were used as the monomers for ROMP. These monomers were polymerized using Grubbs’ catalysts to generate a series of homo-, co-, block and cross-linked-polymers. These polymers were characterized using GPC, NMR, and IR. In addition, ADMET polymerization of a terminal diolefinunctionalized D-isosorbide (2) was also conducted to produce ADMET polymers.
13

Protein-Polymer Conjugates via Graft-From Ring-Opening Metathesis Polymerization

Isarov, Sergey A. 03 June 2015 (has links)
No description available.
14

Synthesis of top coat surface treatments for the orientation of thin film block copolymers

Chen, Christopher Hancheng 08 October 2013 (has links)
Block copolymer self-assembly has demonstrated sub-optical lithographic resolution . High values of chi, the block copolymer interaction parameter, are required to achieve next-generation lithographic resolution . Unfortunately, high values of chi can lead to thin film orientation control difficulties , which are believed to be caused by large differences in the surface energy of each block relative to the substrate and the free surface. The substrate-block interface can be modified to achieve a surface energy intermediate to that of each individual block ; the air-polymer interface, however, presents additional complications. This thesis describes the synthesis of polymers for top coat surface treatments, which are designed to modify the surface energy of the air-block copolymer interface and enable block copolymer orientation control upon thermal annealing. Polymers with β-keto acid functionality were synthesized to allow polarity switching upon decarboxylation. Syntheses of anhydride containing polymers were established that provide another class of polarity switching materials. / text
15

Controlled Synthesis and Characterization of Branched, Functionalized, and Cyclic Polymers

Chavan, Vijay S. 10 August 2011 (has links)
No description available.
16

Synthesis and Interfacial Behavior of Functional Amphiphilic Graft Copolymers Prepared by Ring-opening Metathesis Polymerization

Breitenkamp, Kurt E. 01 February 2009 (has links)
This thesis describes the synthesis and application of a new series of amphiphilic graft copolymers with a hydrophobic polyolefin backbone and pendent hydrophilic poly(ethylene glycol) (PEG) grafts. These copolymers are synthesized by ruthenium benzylidene-catalyzed ring-opening metathesis polymerization (ROMP) of PEG-functionalized cyclic olefin macromonomers to afford polycyclooctene- graft -PEG (PCOE- g -PEG) copolymers with a number of tunable features, such as PEG graft density and length, crystallinity, and amphiphilicity. Macromonomers of this type were prepared first by coupling chemistry using commercially available PEG monomethyl ether derivatives and a carboxylic acid-functionalized cycloctene. In a second approach, macromonomers possessing a variety of PEG lengths were prepared by anionic polymerization of ethylene oxide initiated by cyclooctene alkoxide. This methodology affords a number of benefits compared to coupling chemistry including an expanded PEG molecular weight range, improved hydrolytic stability of the PEG-polycyclooctene linkage, and a reactive hydroxyl end-group functionality for optional attachment of biomolecules and probes. The amphiphilic nature of these graft copolymers was exploited in oil-water interfacial assembly, and the unsaturation present in the polycyclooctene backbone was utilized in covalent cross-linking reactions to afford hollow polymer capsules. In one approach, a bis -cyclooctene PEG derivative was synthesized and co-assembled with PCOE-g-PEG at the oil-water interface. Upon addition of a ruthenium benzylidene catalyst, a cross-linked polymer shell is formed through ring-opening cross-metathesis between the bis -cyclooctene cross-linker and the residual olefins in the graft copolymer. By incorporating a fluorescent-labeled cyclooctene into the graft copolymer, both oil-water interfacial segregation and effective cross-linking were confirmed using confocal laser scanning microscopy (CLSM). In a second approach, reactive functionality capable of chemical cross-linking was incorporated directly into the polymer backbone by synthesis and copolymerization of phenyl azide and acyl hydrazine-functional cyclooctene derivatives. Upon assembly, these reactive polymers were cross-linked by photolysis (in the phenyl azide case) or by addition of glutaraldehyde (in the acyl hydrazine case) to form mechanically robust polymer capsules with tunable degradability ( i.e. non-degradable or pH-dependent degradability). This process permits the preparation of both oil-in-water and water-in-oil capsules, thus enabling the encapsulation of hydrophobic or hydrophilic reagents in the capsule core. Furthermore, the assemblies can be sized from tens of microns to the 150 nm - 1 µm size range by either membrane extrusion or ultrasonication techniques. These novel capsules may be well-suited for a number of controlled release applications, where the transport of encapsulated compounds can be regulated by factors such as cross-link density, hydrolytic stability, and environmental triggers such as changes in pH.
17

Oligopeptide-functionalized Graft Copolymers: Synthesis and Applications in Nucleic Acid Delivery

Breitenkamp, Rebecca Boudreaux 01 February 2009 (has links)
Utilizing the diverse functionality of amino acids, a new class of amphiphilic graft copolymers has been synthesized, characterized, and explored for applications in biomaterials and nucleic acid delivery. This thesis research focused on the syntheses of oligopeptide-functionalized polyesters and polyolefins. Polyester functionalization was geared towards applications in biomaterials, tissue engineering, and drug delivery by incorporating sequences that promote cell-adhesion. These polyester- graft -oligopeptide materials were prepared by a 1,3-Huisgen cycloaddition reaction, "click" chemistry, of an azide-terminated oligopeptide (prepared by Fmoc-based solid phase peptide synthesis (SPPS)) and alkyne-containing polyester (synthesized by ring-opening polymerization). Following the syntheses of these materials, they were analyzed by nuclear magnetic resonance (NMR) and organic gel permeation chromatography (GPC). The oligopeptide-functionalized polyolefins were designed for nucleic acid complexation, and therefore the oligopeptide sequences were intended to incorporate positively-charged moieties ( e.g. , oligolysine) for DNA and short interfering RNA (siRNA) complexation. These graft copolymers, prepared by SPPS followed by ring-opening metathesis polymerization, have highly tunable structures that enable control over charge density and polymer backbone rigidity. Moreover, non-ionic hydrophilic grafts such as polyethylene glycol were integrated into these polyelectrolytes such that the charges along the polymer backbone are spaced accordingly while maintaining the hydrophilicity of the polymer. While numerous applications for such charged, "bio-tailored" materials can be envisioned, this work is geared towards positively-charged polyelectrolytes for their potential application in nucleic acid therapy, specifically the delivery of plasmid DNA and siRNA. These graft copolymers were characterized ( 1 H, 13 C NMR, organic and aqueous GPC), studied for their solution properties (static and dynamic light scattering), and investigated as polyplexes with plasmid DNA.
18

Synthesis and characterization of main-chain bile acid-based degradable polymers

Zhang, Jie 07 1900 (has links)
Les acides biliaires sont des composés naturels existants dans le corps humain. Leur biocompatibilité, leur caractère amphiphile et la rigidité de leur noyau stéroïdien, ainsi que l’excellent contrôle de leurs modifications chimiques, en font de remarquables candidats pour la préparation de matériaux biodégradables pour le relargage de médicaments et l'ingénierie tissulaire. Nous avons préparé une variété de polymères à base d’acides biliaires ayant de hautes masses molaires. Des monomères macrocycliques ont été synthétisés à partir de diènes composés de chaînes alkyles flexibles attachées à un noyau d'acide biliaire via des liens esters ou amides. Ces synthèses ont été réalisées par la fermeture de cycle par métathèse, utilisant le catalyseur de Grubbs de première génération. Les macrocycles obtenus ont ensuite été polymérisés par ouverture de cycle, entropiquement induite le catalyseur de Grubbs de seconde génération. Des copolymères ont également été préparés à partir de monolactones d'acide ricinoléique et de monomères cycliques de triester d’acide cholique via la même méthode. Les propriétés thermiques et mécaniques et la dégradabilité de ces polymères ont été étudiées. Elles peuvent être modulées en modifiant les différents groupes fonctionnels décorant l’acide biliaire et en ayant recours à la copolymérisation. La variation des caractéristiques physiques de ces polymères biocompatibles permet de moduler d’autres propriétés utiles, tel que l’effet de mémoire de forme qui est important pour des applications biomédicales. / Bile acids are natural compounds in the body. Their biocompatibility, facial amphiphilicity, rigidity of steroid nucleus, and ease of chemical modification make them excellent candidates as building blocks for making biodegradable materials used in drug delivery and tissue engineering applications. We have prepared main-chain bile acid-based polymers having high molecular weights. Macrocyclic monomers were synthesized from dienes, which consist of flexible alkyl chains attached to a bile acid core through either ester or amide linkages, via ring closing metathesis using first-generation Grubbs catalyst. They were polymerized using entropy-driven ring-opening metathesis polymerization using second-generation Grubbs catalyst. Copolymers were also prepared from monolactone of ricinoleic acid and cholic acid-based cyclic triester monomer via the same method. The thermal and mechanical properties and degradation behaviours of these polymers have been investigated. The properties can be tuned by varying the chemical linking with the bile acid moiety and by varying the chemical composition of the polymers such as copolymerization with ricinoleic acid lactones. The tunability of the physical properties of these biocompatible polymers gives access to a range of interesting attributes. For example, shape memory properties have been observed in some samples. This may prove useful in the design of materials for biomedical applications.
19

Dendrimers and dendronized polymers : synthesis and characterization

Nyström, Andreas January 2006 (has links)
The goal of this work was to synthesize complex macromolecular architectures such as dendrimers and dendronized polymers, and evaluate the effect from the dendrons on the optical and material properties. The work presented in this doctoral thesis, Dendrimers and Dendronized Polymers - Synthesis and Characterization, is divided into one minor and one major part. The first part deals with the synthesis and characterization of two sets of dendritic porphyrins based on 2,2-bis(methylol)propionic acid (bis-MPA). The second part deals with the synthesis and characterization of dendronized poly(hydroxyl ethyl methacylate), dendronized poly(norbornene), and dendronized triblock copolymers, were the pendant dendrons are based on bis-MPA. Both free-base and zinc containing dendritic porphyrins was synthesized up to the fifth generation by employing iterative ester coupling utilizing the acetonide protected anhydride of bis-MPA as generic building block. First and second generation dendron bearing methacrylates based on 2-hydroxyethyl methacrylate were also synthesized by utilizing the acetonide protected anhydride of bis-MPA, and subsequently polymerized by atom transfer radical polymerization. By adopting a divergent “graft-to” approach starting from the first generation dendronized poly(hydroxyl ethyl methacrylate), well-defined dendronized polymers with acetonide, hydroxyl, acetate and hexadecyl surface functionality were obtained. By utilizing the same divergent iterative esterfication, first to fourth generation dendron functionalized norbornenes were synthesized. These monomers were polymerized by ring-opening metathesis polymerization, utilizing either Grubbs´ first or second generation catalyst. Acrylate functional first to fourth generation monomers were synthesized by the copper(I) catalyzed “click” coupling of azido functional dendrons and propargyl acrylate. The monomers were polymerized to dendronized triblock copolymers by reversible addition-fragmentation chain transfer polymerization, utilizing a difunctional poly(methyl methacrylate) as macro chain transfer agent. The bulk properties of the dendronized poly(hydroxyl ethyl methacrylate) and poly(norbornene) were investigated by dynamic rheological measurements and differential scanning calorimetry. It was found that all the acetonide functional bis-MPA based dendronized polymers had glass transitions temperatures in a similar range. The rheological behaviour showed that for the dendronized polymers having the same backbone length the complex viscosity as a function of functionality was independent of the surface functionality of the polymer. The generation number of the polymer had a profound influence on the complex viscosity, changing form a Newtonian behaviour to a shear thinning behaviour when the generation of the dendrons was increased from two to four. The dendronized poly(norbornene) had increasingly shorter backbone lengths for each generational increase, and for the materials set with comparably lower degree of polymerization, the G’ part of the complex modulus was mostly affected by attaching larger dendrons. In the case of the sample set of higher degree of polymerization, the second, third, and fourth generation samples had similar slopes of the G’ and G” curves, indicating a similar relaxation behaviour. / QC 20100914
20

Synthesis and characterization of main-chain bile acid-based degradable polymers

Zhang, Jie 07 1900 (has links)
Les acides biliaires sont des composés naturels existants dans le corps humain. Leur biocompatibilité, leur caractère amphiphile et la rigidité de leur noyau stéroïdien, ainsi que l’excellent contrôle de leurs modifications chimiques, en font de remarquables candidats pour la préparation de matériaux biodégradables pour le relargage de médicaments et l'ingénierie tissulaire. Nous avons préparé une variété de polymères à base d’acides biliaires ayant de hautes masses molaires. Des monomères macrocycliques ont été synthétisés à partir de diènes composés de chaînes alkyles flexibles attachées à un noyau d'acide biliaire via des liens esters ou amides. Ces synthèses ont été réalisées par la fermeture de cycle par métathèse, utilisant le catalyseur de Grubbs de première génération. Les macrocycles obtenus ont ensuite été polymérisés par ouverture de cycle, entropiquement induite le catalyseur de Grubbs de seconde génération. Des copolymères ont également été préparés à partir de monolactones d'acide ricinoléique et de monomères cycliques de triester d’acide cholique via la même méthode. Les propriétés thermiques et mécaniques et la dégradabilité de ces polymères ont été étudiées. Elles peuvent être modulées en modifiant les différents groupes fonctionnels décorant l’acide biliaire et en ayant recours à la copolymérisation. La variation des caractéristiques physiques de ces polymères biocompatibles permet de moduler d’autres propriétés utiles, tel que l’effet de mémoire de forme qui est important pour des applications biomédicales. / Bile acids are natural compounds in the body. Their biocompatibility, facial amphiphilicity, rigidity of steroid nucleus, and ease of chemical modification make them excellent candidates as building blocks for making biodegradable materials used in drug delivery and tissue engineering applications. We have prepared main-chain bile acid-based polymers having high molecular weights. Macrocyclic monomers were synthesized from dienes, which consist of flexible alkyl chains attached to a bile acid core through either ester or amide linkages, via ring closing metathesis using first-generation Grubbs catalyst. They were polymerized using entropy-driven ring-opening metathesis polymerization using second-generation Grubbs catalyst. Copolymers were also prepared from monolactone of ricinoleic acid and cholic acid-based cyclic triester monomer via the same method. The thermal and mechanical properties and degradation behaviours of these polymers have been investigated. The properties can be tuned by varying the chemical linking with the bile acid moiety and by varying the chemical composition of the polymers such as copolymerization with ricinoleic acid lactones. The tunability of the physical properties of these biocompatible polymers gives access to a range of interesting attributes. For example, shape memory properties have been observed in some samples. This may prove useful in the design of materials for biomedical applications.

Page generated in 0.1756 seconds