• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Three-dimensional reconstruction of braided river morphology and morphodynamics with structure-from-motion photogrammetry

James, Joe Steven January 2018 (has links)
The recent emergence of Structure-from-Motion Photogrammetry (SfM) has created a cost-effective alternative to conventional laser scanning for the production of high-resolution topographic datasets. There has been an explosion of applications of SfM within the geomorphological community in recent years, however, the focus of these has largely been small-scale (102 - 103 m2), building on innovations in low altitude Unmanned Aircraft Systems (UAS). This thesis examines the potential to extend the scope of SfM photogrammetry in order to quantify of landscape scale processes. This is examined through repeat surveys of a ~35 km2 reach of the Dart River, New Zealand. An initial SfM survey of this reach was conducted in April 2014, following a large landslide at the Slipstream debris fan. Validation of the resulting digital elevation models using Independent Control Point's (ICPs) suggested encouraging results, however benchmarking the survey against a long-range laser scanned surface indicated the presence of significant systematic errors associated with inaccurate estimation of the SfM bundle adjustment. Using a combination of scaled laboratory field experiments, this research aimed to develop and test photogrammetric data collection and modelling strategies to enhance modelling of 3D scene structure using limited constraints. A repeat survey in 2015 provided an opportunity to evaluate a new survey strategy, incorporating a convergent camera network and a priori measurement of camera pose. This resulted in halving of mean checkpoint residuals and a reduction in systematic error. The models produced for both 2014 and 2015 were compared using a DEM differencing (DoD) methodology to assess the applicability of wide-area SfM models for the analysis of geomorphic change detection. The systematic errors within the 2014 model confound reliable change detection, although strategies to correlate the two surveys and measure the residual change show promise. The future use of SfM over broad landscape scales has significant potential, however, this will require robust data collection and modelling strategies and improved error modelling to increase user confidence.
2

SIZE, DYNAMICS AND CONSEQUENCES OF LARGE-SCALE HORIZONTAL COHERENT STRUCTURES IN OPEN-CHANNEL FLOWS: AN EXPERIMENTAL STUDY

Ahmari, Habib 20 September 2013 (has links)
This thesis concerns the occurrence of the large-scale bed and plan forms known as alternate bars and meandering, and the internal structures of the flow associated with their formation. The work is to be viewed as an extension of previous work by da Silva (1991), Yalin (1992), and Yalin and da Silva (2001). As a first step in this work, the criteria for occurrence of alternate bars and meandering of Yalin and da Silva (2001) is re-considered in view of additional field and laboratory data from the recent literature and data resulting from two series of experimental runs carried out in two sediment transport flumes. This leads to a number of modifications of the boundary-lines in the related existence-region diagram of Yalin and da Silva. The size of the largest horizontal coherent structures (HCS’s) of an alternate bar inducing flow was then investigated experimentally on the basis of three series of flow velocity measurements. These were carried out in a 21m-long, 1m-wide straight channel, conveying a 4cm-deep flow. The bed consisted of a silica sand having a grain size of 2mm; its surface was flat. The measurements were carried out using a Sontek 2D Micro ADV. The horizontal burst length was found to be between five and seven times the flow width. The effect of the HCS’s on the mean flow was also investigated. A slight internal meandering of the flow caused by the superimposition of burst-sequences on the mean flow was clearly detectable. Finally, with the aid of three new series of measurements in the same channel, an attempt was made to penetrate the dynamics and life-cycle of the HCS’s. For this purpose, quadrant analysis was used; the cross-sectional distribution of relevant statistical turbulence-related parameters was investigated; and cross-correlations of flow velocity along the flow depth and across the channel were performed. The analysis indicates that the HCS’s originate near the channel banks, with the location of ejections and sweeps being anti-symmetrically arranged with regard to the channel centreline, and then evolve so as to occupy the entire depth of the water and the entire width of the channel. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2010-03-09 10:20:53.596
3

Long Term Bathymetry Changes in the Lower Mississippi River due to Variability in Hydrograph and Variable Diversion Schemes

Reins, Nina J 18 May 2018 (has links)
This research is part of an ongoing effort to improve predictions for bathymetric and morphological changes in the Lower Mississippi River. The utilized model is a subset of a previously calibrated Delft3D model. This shorter model has reduced computational time, and can be deployed for analysis focused on the area between Belle Chasse and HOP, which is the domain of the model. Simulation runs conducted under this study vary from 12 years to 48 years, utilizing a developed 12-year variable hydrograph. The comparison of variable annual hydrograph and repeated representative annual (uniform) hydrograph input data on bathymetric changes indicated that the absolute bathymetric equilibrium is dependent on year to year variability. The utilization of a uniform hydrograph increases the predicted deposition within the river domain. When evaluating diversion sand capture, utilizing a uniform hydrograph can be considered a conservative approach, while utilizing a variable hydrograph will result in more accurate sand load volumes captured by the diversion.In general, sediment capture showed only minor interdependencies amongst multiple diversions, as long as the total diversion flow is less than 140,000cfs. This study shows that morphological changes are dependent on the number and location of multiple diversions. The largest interdependencies occur for the most downstream diversions, which increase with the total diverted flow. A true equilibrium was not achieved within 48 years, with or without sea level rise. It was observed, that the system with diversions responds to sea level rise by an increase in deposition, which increases with total diverted flow.
4

Spatial, temporal and ecological correlates of morphological variation among North American freshwater fishes

Jacquemin, Stephen J. 04 May 2013 (has links)
This dissertation outlines the contribution of evolutionary and environmental factors on North American freshwater fish morphological variation. A more thorough understanding of the factors which result in morphological variation is essential to describing patterns of evolutionary diversification, distribution, ecological niche, ontogeny, sexual dimorphism, ecosystem role, community assembly, invasion dynamics, and conservation. This dissertation makes a unique contribution to understanding morphological diversity in freshwater fishes by linking intraspecific and interspecific variation to phylogeny, allometry, sex, habitat niche, geographic niche, hydrology, and long term environmental change. This dissertation is comprised of three chapters which detail large scale macroevolutionary patterns in morphological variation for North American freshwater fishes, long term morphological changes with hydrological alterations in Cyprinidae, and phenotypic plasticity of freshwater drum in the Wabash River. Overall, North American fishes tend to be deeper bodied and more robust with larger body size, in females, in low flow and lentic hydrological conditions, and in taxa with smaller geographic range that occupy more specialized habitat niches. Further, macroevolutionary analysis suggests that the majority of morphological diversification occurred relatively early on in the evolutionary history of North American fishes. / Evolution of North American freshwater fish morphology with variation in habitat use and geographic range -- 100 years of hydrologic alterations and morphological variation in Cyprinidae -- Effects of allometry, sex and river location on morphological variation of freshwater drum Aplodinotus grunniens in the Wabash River, USA. / Department of Biology
5

A two-dimensional numerical model for the investigation of the effects of dams on the Zambezi River Delta

Kime, Robyn Laura 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The Zambezi River is the largest east-draining river in Africa. It captures runoff from 8 different countries before draining into the Indian Ocean in Mozambique through the Zambezi Delta which is recognised as a (Ramsar) Wetland of international importance. The Zambezi River flows are currently regulated by four large hydropower dams within its catchment. Much attention has been given in recent literature to the detrimental effects of the altered flow regime as a result of dams on the Zambezi River and the Delta in particular. Existing research relating to these negative effects includes many detailed ecological, hydrological and qualitative morphological studies but to date no detailed morphological modelling studies have been conducted in this regard. In this thesis a two-dimensional coupled hydrodynamic and morphological numerical model of the Zambezi Delta is created using topographical information obtained from a navigational study (Rio Tinto, 2011). The model hydrodynamics are calibrated using recorded water levels and flows at two gauging stations within the model domain. The bed load sediment transport is calibrated using field measurements (ASP, 2012b). The effects of dams on the Zambezi Delta are investigated by performing two 10 year simulations, one representing the current (post-dam) scenario and the other representing a pre-dam scenario. These simulation results show a significant decrease in flooded areas and sediment movement on the floodplains as a result of dams. Additional effects on channel widths and depth, on bed gradings, and on tidal water level variations are analysed. The model is then used to simulate a proposed environmental flood release scenario. Such releases have been recommended as a means to partially mitigate the negative impacts of dams on the Zambezi River. In this case an annual flood release supplying a peak flow of 8500 m3/s (slightly less than the pre-dam mean annual flood of 10 000 m3/s) was found to cause slightly more flooding of the close floodplains and to have small effects on the river channel width. The model predicts hydrodynamics and bed sediment transport of non-cohesive sediments with suitable accuracy but an issue with the suspended transport of cohesive sediments was identified. Recommendations are made for addressing the suspended sediment transport inaccuracy. The model, in its current form, can provide quantitative information regarding the hydrodynamics and course sediment transport of the general delta region on a coarse scale. With additional computational resources and accurate topographical information the model can be refined to give accurate predictions for localised areas within the delta. Such information would be valuable to specialist studies addressing the environmental effects of various proposed flooding scenarios or future dams. / AFRIKAANSE OPSOMMING: Die Zambezirivier is die grootste oos-dreineerende rivier in Afrika. Dit ontvang afloop van ag verskillende lande voor dit in die Indiese Oseaan in Mozambiek uitmond. Die Zambezidelta work erken as 'n RAMSAR vleiland van internasionale belang. Die vloei in die rivier word tans gereguleer deur vier groot hidro-elektriese damme binne sy opvangsgebied. Baie aandag is in die onlangse literatuur gegee aan die nadelige gevolge van die veranderde vloei as gevolg van damme op die Zambezi Rivier en spesifiek op die Delta. Bestaande navorsing met betrekking tot hierdie negatiewe effekte sluit in detail ekologiese, hidrologiese en kwalitatiewe morfologiese studies, maar tot op datum is geen gedetailleerde morfologiese modelleringstudies gedoen nie. In hierdie tesis is 'n twee-dimensionele gekoppelde hidrodinamiese en morfologiese numeriese model van die Zambezi Delta geskep met behulp van topografiese inligting wat verkry is uit 'n navigasiestudie (Rio Tinto, 2011). Die model hidrodinamika is gekalibreer deur teen watervlakke en vloei by twee meetstasies in die model domein. Die bedvrag sedimentvervoer is gekalibreer met behulp van veldmetings (ASP, 2012b). Die ȉnvloed van die damme op die Zambezi Delta is ondersoek deur twee 10-jarige simulasies, een wat die huidige ( na-dam ) scenario en die ander wat 'n voor-dam scenario ondersoek. Hierdie simulasie resultate toon 'n beduidende afname in die oorstroomde gebiede en sedimentbeweging op die vloedvlaktes as gevolg van damme. Bykomende effekte op kanaalbreedtes en -diepte, op die bedgraderings , en op getywatervlak variasies is ontleed. Die model is vervolgens gebruik om 'n voorgestelde omgewingings vloedloslaating te ondersoek. Sodanige loslaatings is aanbeveel om die negatiewe impak van damme op die rivier gedeeltelik te verminder. In hierdie geval gee 'n jaarlikse vloedloslaating met 'n piekvloei van 8500 m3/s (effens minder as die voor-dam gemiddelde jaarlikse vloed van 10 000 m3/s) effens meer oorstromings van die vloedvlaktes en het 'n klein uitwerking op die rivierkanaalbreedte. Die model voorspel die hidrodinamika en bedsedimentvervoer van nie-kohesiewe sedimente met betroubaarheid, maar 'n probleem met die vervoer van kohesiewe sedimente is geïdentifiseer. Aanbevelings word gemaak vir die aanspreek van die kohesiewe sedimentvervoer onakkuraatheid. Die model, in sy huidige vorm, kan kwantitatiewe inligting oor die hidrodinamika en natuurlik sedimentvervoer van die algemene delta streek by benadering verskaf. Met bykomende rekenaar hulpbronne en akkurate topografiese inligting kan die model verfyn word om akkurate voorspellings vir plaaslike gebiede binne die delta te gee. Sulke inligting kan waardevol wees vir spesialis-studies van die omgewingsimpakte van verskillende voorgestelde vloedloslaatings of toekomstige damme.
6

Assessment of the Oxbow Morphology of the Caloosahatchee River and its Evolution Over Time: A Case Study in South Florida

Delhomme, Chloe 01 January 2012 (has links)
The Caloosahatchee River, located in Southern Florida, was originally a meandering and relatively shallow river. During the 1920s, the Caloosahatchee River was channelized and became the C-43 canal. The channelization has significantly impacted the river ecosystem, particularly the oxbows. The oxbows are the U-shaped water bodies on each side of the river channel, which are the remnant bends of the original river. To understand how anthropogenic influence affects hydrologic systems, the proposed case study was designed to assess the geomorphic changes of the oxbows of the Caloosahatchee River, Florida. Understanding and documenting the evolution of river morphology is becoming increasingly important today with increasing river degradation due to anthropogenic activities. In fact, such monitoring will provide critical information regarding river conditions to support future management plans and restoration efforts. Monitoring is a key element of successful management. This study provided a baseline for future monitoring by assessing the current morphologic conditions of the thirty-seven oxbows of the Caloosahatchee River, coupled with GPS data. Bathymetric surveys were used to assess the morphology of the oxbows. The study also presented trends in the evolution of oxbow morphology by comparing the data collected from the survey in 2011 with a cross-sectional survey collected by the South Florida Water Management District in 1978. The study revealed that 21 of 37 oxbows are still open; however, 16 are already partially filled, either at one of the ends or somewhere in the interior. In both 1978 and 2011, oxbows in Lee County were significantly larger, wider and deeper than in Hendry County. Exterior limb cross-sections were significantly larger, wider and deeper than interior cross-sections in both 1978 and 2011. Finally, an attempt to determine trends in the evolution of the morphology of the oxbows demonstrated that the overall maximum depth is significantly decreasing but only in the interior of the oxbow and that the mean depth is significantly increasing but only in the exterior cross-sections. This analysis also showed that the width is significantly increasing throughout the oxbow. Factors responsible for such differences may include natural geomorphic processes, pattern changes due to channelization, land use and anthropogenic activities.
7

Continuous riparian vegetation change following a large, infrequent flood along the Sabie River, Kruger National Park / Philip Ayres

Ayres, Philip January 2012 (has links)
The flood of 2000 caused extensive changes within the riparian landscape of the Sabie River, Kruger National Park (KNP). Changes within the riparian landscape and the removal of vegetation resulted in considerable changes in riparian vegetation characteristics. Open patches created by the flood served as a template for the establishment of new species and the regeneration of existing species, which consequently resulted in a patch mosaic. This memorable event encouraged an investigation into the response of the Sabie River ecosystem to the memorable Large Infrequent Disturbance (LID). Riparian ecosystems are driven by varying combinations of environmental factors, such as water availability, disturbance, herbivory, fire and river morphology. This complexity depicts unique vegetation structure and assemblages of associated plant species. The lack of sufficient knowledge on the role of riparian vegetation in the health assessment of surrounding ecosystems along semi-arid rivers prompted the establishment of the Kruger Rivers Post Flood Research Program (KRPFRP). Research conducted through this monitoring program four years after the 2000 flood, revealed no significant changes in the species composition, although the location and density of many common riparian species have been changed. There was a decrease in species density across the macro channel floor (MCF) and an increase in species density across the macro channel bank (MCB). Furthermore, it was reported that the flood altered the distribution of height classes across the macro channel. In general the riparian vegetation was shorter and bushier four years post-flood. These studies furthermore illustrated that the tree to shrub ratio did not change drastically from pre-flood conditions, although a decrease in the number of shrub individuals was reported. The research presented in this dissertation was designed to further explore changes in woody species composition and structure along the Sabie River, KNP at a post flood temporal interval, i.e. between the last survey in 2004 (by the KRPFRP) and 2010. For data compatibility, the sampling and analytical approach of this study conforms to the approach followed by the KRPFRP. Data were sampled within four preselected belt-transects that form part of the larger KRPFRP. All established woody individuals were counted and measured within each contiguous 10 m x 30 m plot within each of the four belt-transects. Log transformed species composition data were analysed through the application of the Bray Curtis dissimilarity index in combination with Ward’s method of clustering. Statistical significant differences between clusters were tested through the application of the Fisher’s exact relationship test. The MIXED Procedure or PROC MIXED model was used to investigate change within the vegetation structural data. Results obtained through the various analytical methods broadly support the findings of the KRPFRP. No significant change in woody species composition could be detected between 2004 and 2010. However, a change in the density (increase and decrease) of certain species across the MCB and MCF was revealed. Species richness and density increased significantly on the MCF oppose to small changes on the MCB. A significant increase in the total number of shrubs on the MCF contributed to an overall increase in woody density for the entire study area between 2004 and 2010. Shrubs therefore remained the most dominant growth form in both sampling years. Trees decreased across the MCB although the total number of established trees remained unchanged between 2004 and 2010. Riparian vegetation structure is directly linked to species assemblages, hence the continued dominance of shrub species along the Sabie River in the KNP The Sabie River riparian landscape is therefore still characterised by short and multi-stemmed woody individuals ten years after the LID. / Thesis (MSc (Environmental Sciences))--North-West University, Potchefstroom Campus, 2013
8

Continuous riparian vegetation change following a large, infrequent flood along the Sabie River, Kruger National Park / Philip Ayres

Ayres, Philip January 2012 (has links)
The flood of 2000 caused extensive changes within the riparian landscape of the Sabie River, Kruger National Park (KNP). Changes within the riparian landscape and the removal of vegetation resulted in considerable changes in riparian vegetation characteristics. Open patches created by the flood served as a template for the establishment of new species and the regeneration of existing species, which consequently resulted in a patch mosaic. This memorable event encouraged an investigation into the response of the Sabie River ecosystem to the memorable Large Infrequent Disturbance (LID). Riparian ecosystems are driven by varying combinations of environmental factors, such as water availability, disturbance, herbivory, fire and river morphology. This complexity depicts unique vegetation structure and assemblages of associated plant species. The lack of sufficient knowledge on the role of riparian vegetation in the health assessment of surrounding ecosystems along semi-arid rivers prompted the establishment of the Kruger Rivers Post Flood Research Program (KRPFRP). Research conducted through this monitoring program four years after the 2000 flood, revealed no significant changes in the species composition, although the location and density of many common riparian species have been changed. There was a decrease in species density across the macro channel floor (MCF) and an increase in species density across the macro channel bank (MCB). Furthermore, it was reported that the flood altered the distribution of height classes across the macro channel. In general the riparian vegetation was shorter and bushier four years post-flood. These studies furthermore illustrated that the tree to shrub ratio did not change drastically from pre-flood conditions, although a decrease in the number of shrub individuals was reported. The research presented in this dissertation was designed to further explore changes in woody species composition and structure along the Sabie River, KNP at a post flood temporal interval, i.e. between the last survey in 2004 (by the KRPFRP) and 2010. For data compatibility, the sampling and analytical approach of this study conforms to the approach followed by the KRPFRP. Data were sampled within four preselected belt-transects that form part of the larger KRPFRP. All established woody individuals were counted and measured within each contiguous 10 m x 30 m plot within each of the four belt-transects. Log transformed species composition data were analysed through the application of the Bray Curtis dissimilarity index in combination with Ward’s method of clustering. Statistical significant differences between clusters were tested through the application of the Fisher’s exact relationship test. The MIXED Procedure or PROC MIXED model was used to investigate change within the vegetation structural data. Results obtained through the various analytical methods broadly support the findings of the KRPFRP. No significant change in woody species composition could be detected between 2004 and 2010. However, a change in the density (increase and decrease) of certain species across the MCB and MCF was revealed. Species richness and density increased significantly on the MCF oppose to small changes on the MCB. A significant increase in the total number of shrubs on the MCF contributed to an overall increase in woody density for the entire study area between 2004 and 2010. Shrubs therefore remained the most dominant growth form in both sampling years. Trees decreased across the MCB although the total number of established trees remained unchanged between 2004 and 2010. Riparian vegetation structure is directly linked to species assemblages, hence the continued dominance of shrub species along the Sabie River in the KNP The Sabie River riparian landscape is therefore still characterised by short and multi-stemmed woody individuals ten years after the LID. / Thesis (MSc (Environmental Sciences))--North-West University, Potchefstroom Campus, 2013

Page generated in 0.0778 seconds