• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cylinder kernel expansion of Casimir energy with a Robin boundary

Liu, Zhonghai 30 October 2006 (has links)
We compute the Casimir energy of a massless scalar field obeying the Robin boundary condition on one plate and the Dirichlet boundary condition on another plate for two parallel plates with a separation of alpha. The Casimir energy densities for general dimensions (D = d + 1) are obtained as functions of alpha and beta by studying the cylinder kernel. We construct an infinite-series solution as a sum over classical paths. The multiple-reflection analysis continues to apply. We show that finite Casimir energy can be obtained by subtracting from the total vacuum energy of a single plate the vacuum energy in the region (0,∞)x R^d-1. In comparison with the work of Romeo and Saharian(2002), the relation between Casimir energy and the coeffcient beta agrees well.
2

On the isoperimetric problem for the Laplacian with Robin and Wentzell boundary conditions

Kennedy, James Bernard January 2010 (has links)
Doctor of Philosophy / We consider the problem of minimising the eigenvalues of the Laplacian with Robin boundary conditions $\frac{\partial u}{\partial \nu} + \alpha u = 0$ and generalised Wentzell boundary conditions $\Delta u + \beta \frac{\partial u}{\partial \nu} + \gamma u = 0$ with respect to the domain $\Omega \subset \mathbb R^N$ on which the problem is defined. For the Robin problem, when $\alpha > 0$ we extend the Faber-Krahn inequality of Daners [Math. Ann. 335 (2006), 767--785], which states that the ball minimises the first eigenvalue, to prove that the minimiser is unique amongst domains of class $C^2$. The method of proof uses a functional of the level sets to estimate the first eigenvalue from below, together with a rearrangement of the ball's eigenfunction onto the domain $\Omega$ and the usual isoperimetric inequality. We then prove that the second eigenvalue attains its minimum only on the disjoint union of two equal balls, and set the proof up so it works for the Robin $p$-Laplacian. For the higher eigenvalues, we show that it is in general impossible for a minimiser to exist independently of $\alpha > 0$. When $\alpha < 0$, we prove that every eigenvalue behaves like $-\alpha^2$ as $\alpha \to -\infty$, provided only that $\Omega$ is bounded with $C^1$ boundary. This generalises a result of Lou and Zhu [Pacific J. Math. 214 (2004), 323--334] for the first eigenvalue. For the Wentzell problem, we (re-)prove general operator properties, including for the less-studied case $\beta < 0$, where the problem is ill-posed in some sense. In particular, we give a new proof of the compactness of the resolvent and the structure of the spectrum, at least if $\partial \Omega$ is smooth. We prove Faber-Krahn-type inequalities in the general case $\beta, \gamma \neq 0$, based on the Robin counterpart, and for the ``best'' case $\beta, \gamma > 0$ establish a type of equivalence property between the Wentzell and Robin minimisers for all eigenvalues. This yields a minimiser of the second Wentzell eigenvalue. We also prove a Cheeger-type inequality for the first eigenvalue in this case.
3

On the isoperimetric problem for the Laplacian with Robin and Wentzell boundary conditions

Kennedy, James Bernard January 2010 (has links)
Doctor of Philosophy / We consider the problem of minimising the eigenvalues of the Laplacian with Robin boundary conditions $\frac{\partial u}{\partial \nu} + \alpha u = 0$ and generalised Wentzell boundary conditions $\Delta u + \beta \frac{\partial u}{\partial \nu} + \gamma u = 0$ with respect to the domain $\Omega \subset \mathbb R^N$ on which the problem is defined. For the Robin problem, when $\alpha > 0$ we extend the Faber-Krahn inequality of Daners [Math. Ann. 335 (2006), 767--785], which states that the ball minimises the first eigenvalue, to prove that the minimiser is unique amongst domains of class $C^2$. The method of proof uses a functional of the level sets to estimate the first eigenvalue from below, together with a rearrangement of the ball's eigenfunction onto the domain $\Omega$ and the usual isoperimetric inequality. We then prove that the second eigenvalue attains its minimum only on the disjoint union of two equal balls, and set the proof up so it works for the Robin $p$-Laplacian. For the higher eigenvalues, we show that it is in general impossible for a minimiser to exist independently of $\alpha > 0$. When $\alpha < 0$, we prove that every eigenvalue behaves like $-\alpha^2$ as $\alpha \to -\infty$, provided only that $\Omega$ is bounded with $C^1$ boundary. This generalises a result of Lou and Zhu [Pacific J. Math. 214 (2004), 323--334] for the first eigenvalue. For the Wentzell problem, we (re-)prove general operator properties, including for the less-studied case $\beta < 0$, where the problem is ill-posed in some sense. In particular, we give a new proof of the compactness of the resolvent and the structure of the spectrum, at least if $\partial \Omega$ is smooth. We prove Faber-Krahn-type inequalities in the general case $\beta, \gamma \neq 0$, based on the Robin counterpart, and for the ``best'' case $\beta, \gamma > 0$ establish a type of equivalence property between the Wentzell and Robin minimisers for all eigenvalues. This yields a minimiser of the second Wentzell eigenvalue. We also prove a Cheeger-type inequality for the first eigenvalue in this case.
4

Problèmes spectraux avec conditions de Robin sur des domaines à coins du plan / Spectral problems with Robin boundary conditions on planar domains with corners

Khalile, Magda 21 September 2018 (has links)
Dans cette thèse, nous étudions les propriétés spectrales du Laplacien avec la condition de bord de Robin attractive sur des domaines du plan à coins. Notre but est de comprendre l’influence des coins convexes sur l’asymptotique des valeurs propres de cet opérateur lorsque le paramètre de Robin est grand. Nous montrons en particulier que l’asymptotique des premières valeurs propres de Robin sur des polygones curvilignes est déterminée par des opérateurs modèles : les Laplaciens agissant sur les secteurs tangents au domaine. Pour une certaine classe de polygones droits, nous montrons l’existence d’un opérateur effectif sur le bord du domaine qui détermine l’asymptotique des valeurs propres suivantes. Enfin, des asymptotiques de Weyl pour différents seuils dépendant du paramètre de Robin sont obtenues. / In this thesis, we are interested in the spectral properties of the Laplacian with the attractive Robin boundary condition on planar domains with corners. The aim is to understand the influence of the convex corners on the spectral properties of this operator when the Robin parameter is large. In particular, we show that the asymptotics of the first Robin eigenvalues on curvilinear polygons is determined by model operators: the Robin Laplacians acting on infinite sectors. For a particular class of polygons with straight edges, we prove the existence of an effective operator acting on the boundary of the domain and determining the asymptotics of the further eigenvalues. Finally, some Weyl-type asymptotics for different thresholds depending on the Robin parameter are obtained.
5

Approximations numériques en situations complexes : applications aux plasmas de tokamak / Numerical approximations in complex situations : applications to tokamak plasmas

Bensiali, Bouchra 11 July 2014 (has links)
Motivée par deux problématiques liées aux plasmas de tokamak, cette thèse propose deux méthodes d'approximation numérique pour deux problèmes mathématiques s'y rattachant. D'une part, pour l'étude du transport turbulent de particules, une méthode numérique basée sur les schémas de subdivision est présentée pour la simulation de trajectoires de particules dans un champ de vitesse fortement variable. D'autre part, dans le cadre de la modélisation de l'interaction plasma-paroi, une méthode de pénalisation est proposée pour la prise en compte de conditions aux limites de type Neumann ou Robin. Analysées sur des problèmes modèles de complexité croissante, ces méthodes sont enfin appliquées dans des situations plus réalistes d'intérêt pratique dans l'étude du plasma de bord. / Motivated by two issues related to tokamak plasmas, this thesis proposes two numerical approximation methods for two mathematical problems associated with them. On the one hand, in order to study the turbulent transport of particles, a numerical method based on subdivision schemes is presented for the simulation of particle trajectories in a strongly varying velocity field. On the other hand, in the context of modeling the plasma-wall interaction, a penalization method is proposed to take into account Neumann or Robin boundary conditions. Analyzed on model problems of increasing complexity, these methods are finally applied in more realistic situations of practical interest in the study of the edge plasma.
6

Multiscale methods for oil reservoir simulation / Método multiescala para simulações de reservatórios de petróleo

Guiraldello, Rafael Trevisanuto 26 March 2019 (has links)
In this thesis a multiscale mixed method aiming at the accurate approximation of velocity and pressure fields in heterogeneous porous media is proposed, the Multiscale Robin Coupled Method (MRCM). The procedure is based on a new domain decomposition method in which the local problems are subject to Robin boundary conditions. The method allows for the independent definition of interface spaces for pressure and flux over the skeleton of the decomposition that can be chosen with great flexibility to accommodate local features of the underlying permeability fields. Numerical simulations are presented aiming at illustrating several features of the new method. We illustrate the possibility to recover the multiscale solution of two wellknown methods of the literature, namely, the Multiscale Mortar Mixed Finite Element Method (MMMFEM) and the Multiscale Hybrid-Mixed (MHM) Finite Element Method by suitable choices of the parameter b in the Robin interface conditions. Results show that the accuracy of the MRCM depends on the choice of this algorithmic parameter as well as on the choice of the interface spaces. An extensive numerical assessment of the MRCM is conduct with two types of interface spaces, the usual piecewise polynomial spaces and the informed spaces, the latter obtained from sets of snapshots by dimensionality reduction. Different distributions of the unknowns between pressure and flux are explored. The results show that b, suitably nondimensionalized, can be fixed to unity to avoid any indeterminacy in the method. Further, with both types of spaces, it is observed that a balanced distribution of the interface unknowns between pressure and flux renders the MRCM quite attractive both in accuracy and in computational cost, competitive with other multiscale methods from the literature. The MRCM solutions are in general only global conservative. Two postprocessing procedures are proposed to recover local conservation of the multiscale velocity fields. We investigate the applicability of such methods in highly heterogeneous permeability fields in modeling the contaminant transport in the subsurface. These methods are compared to a standard procedure. Results indicate that the proposed methods have the potential to produce more accurate results than the standard method with similar or reduced computational cost. / Nesta tese é proposto um método misto multiescala visando a aproximação precisa de campos de velocidade e pressão em meios porosos altamente heterogêneos, o método Multiscale Robin Coupled Method (MRCM). Este procedimento é baseado em um novo método de decomposição de domínio no qual os problemas locais são definidos com condições de contorno de Robin. O método permite a definição independente de espaços de interface para pressão e fluxo sobre o esqueleto da decomposição que pode ser escolhida com grande flexibilidade para acomodar características locais dos campos de permeabilidade subjacentes. Simulações numéricas são apresentadas visando ilustrar várias características do novo método. Ilustramos a possibilidade de recuperar a solução multiescala de dois métodos bem conhecidos da literatura, a saber, o Multiscale Mortar Mixed Finite Element Method (MMMFEM) e o Multiscale Hybrid-Mixed (MHM) Finite Element Method por escolhas adequadas do parâmetro b nas condições da interface de Robin. Os resultados mostram que a precisão do MRCM depende da escolha deste parâmetro algorítmico, bem como da escolha dos espaços de interface. Uma extensa avaliação numérica do MRCM é conduzida com dois tipos de espaços de interface, os usuais espaços polinomiais por partes e os espaços informados, este último obtidos a partir da redução de dimensionalidade de conjutos de espaços de snapshots. Diferentes distribuições de incógnitas entre pressão e fluxo são exploradas. Os resultados mostram que b, adequadamente adimensionalizado, pode ser fixado em unidade para evitar qualquer indeterminação no método. Além disso, com ambos os tipos de espaços, observa-se que uma distribuição equilibrada de incógnita entre pressão e fluxo nas interfaces torna o MRCM bastante atraente tanto em precisão quanto em custo computacional, competitivo com outros métodos multiescala da literatura. As soluções MRCM são, em geral, apenas globalmente conservativas. Dois procedimentos de pós-processamento são propostos para recuperar a conservação local dos campos de velocidade multiescala. Investigamos a aplicabilidade de tais métodos em campos de permeabilidade altamente heterogêneos na modelagem do transporte de contaminantes na subsuperfície. Esses métodos são comparados a um procedimento padrão da literatura. Os resultados indicam que os métodos propostos têm o potencial de produzir resultados mais precisos do que o método padrão com custo computacional similar ou reduzido.
7

La contrôlabilité frontière exacte et la synchronisation frontière exacte pour un système couplé d’équations des ondes avec des contrôles frontières de Neumann et des contrôles frontières couplés de Robin / Exact boundary controllability and exact boundary synchronization for a coupled system of wave equations with Neumann and coupled Robin boundary controls

Lu, Xing 01 July 2018 (has links)
Dans cette thèse, nous étudions la synchronisation, qui est un phénomène bien répandu dans la nature. Elle a été observée pour la première fois par Huygens en 1665. En se basant sur les résultats de la contrôlabilité frontière exacte, pour un système couplé d’équations des ondes avec des contrôles frontières de Neumann, nous considérons la synchronisation frontière exacte (par groupes), ainsi que la détermination de l’état de synchronisation. Ensuite, nous considérons la contrôlabilité exacte et la synchronisation exacte (par groupes) pour le système couplé avec des contrôles frontières couplés de Robin. A cause du manque de régularité de la solution, nous rencontrons beaucoup plus de difficultés. Afin de surmonter ces difficultés, on obtient un résultat sur la trace de la solution faible du problème de Robin grâce aux résultats de régularité optimale de Lasiecka-Triggiani sur le problème de Neumann. Ceci nous a permis d’établir la contrôlabilité exacte, et, par la méthode de la perturbation compacte, la non-contrôlabilité exacte du système. De plus, nous allons étudier la détermination de l’état de synchronisation, ainsi que la nécessité des conditions de compatibilité des matrices de couplage. / This thesis studies the widespread natural phenomenon of synchronization, which was first observed by Huygens en 1665. On the basis of the results on the exact boundary controllability, for a coupled system of wave equations with Neumann boundary controls, we consider its exact boundary synchronization (by groups), as well as the determination of the state of synchronization. Then, we consider the exact boundary controllability and the exact boundary synchronization (by groups) for the coupled system with coupled Robin boundary controls. Due to difficulties from the lack of regularity of the solution, we have to face a bigger challenge. In order to overcome this difficulty, we take advantage of the regularity results for the mixed problem with Neumann boundary conditions (Lasiecka and Triggiani) to discuss the exact boundary controllability, and by the method of compact perturbation, to obtain the non-exact controllability for the system.

Page generated in 0.0362 seconds