• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

YuMi Laserhand / YuMi Laser hand

Reyier, Åsa January 2018 (has links)
Syftet med examensarbetet var att ta fram en laserskärande hand till ABB:s kollaborativa robot ”YuMi”. Rapporten beskriver tillvägagångssätt, utvecklingsprocess och resultat av arbetet. Målet för projektet var att ta fram en fungerande funktionsprototyp som svarade mot den övergripande problemformuleringen: ”Hur integreras tillräcklig säkerhet i laserhanden så att användaren på ett säkert och riskfritt sett kan använda laserhanden i en kontorsmiljö?”  Detta har uppnåtts genom att med lämpliga test och analyseringsmetoder besvara frågeställningarna: ➢ Hur kan skadliga partiklar avlägsnas från luften vid laserskärning av plast, gummi, skumgummi, kartong och trä? ➢ Hur utformas laserhanden på så sätt att en extern skyddskåpa blir överflödig (för att inte skada ögonen)? ➢ Hur integreras en säkerhetsfunktion som gör att lasern stängs av om laserhanden skulle tilta eller avvika från vertikal distans? Arbetet innefattar konceptgenerering, planering, konstruktion av kåpor och byggande av prototyp. Projektet resulterade i en fungerande funktionsprototyp som uppfyllde största delen av arbetsgivarens krav. Både studenten och företaget är nöjda med resultatet. / The purpose of the thesis was to produce a laser-cutting hand to ABB's collaborative robot "YuMi". The report describes the approaches, development process and results of the work.  The aim of the project was to develop a functional prototype that corresponds to the overall problem formulation: "How to achieve enough security in the laser-hand so it is safe and risk-free for users to use the hand in an office environment?"  This has been achieved by using the appropriate tests and methods of analysis to answer the questions: ➢ How to remove harmful particles from the air during laser cutting of plastic, rubber, foam rubber, cardboard and wood? ➢ How to design an external protective cover encapsulate the tool (laser beam) so it will be redundant to protective glasses (so as not to damage the eyes)? ➢ How to integrate a security feature to force the laser to turn off, if the hand increases the distance or deviate from vertical orientation higher then specified limits? The work includes concept generation, project planning, construction of encapsulation and prototype overall construction. The project resulted in a working prototype that fulfilled most of the requirements. Both the student and the company are satisfied with the result.
2

Robotic Hand Controlled by Glove Using Wireless Communication / Robothand Styrd av Handske Genom Trådlös Kommunikation

KAZI, MEHNAZ, BILL, MICHELLE January 2020 (has links)
The interest in the research and development of humanoid robots has been steadily growing in recent years. The application of such robotic systems are many and wide. In this bachelor’s thesis in mechatronics one such robotic system was built in the form of a hand. The aim was to investigate how well the robotic hand could imitate the movements of a user-worn controller glove as well as grip objects, both through wireless communication. The controller glove consisted of an Arduino Nano microcontroller, five flex sensors, an inertial measurement unit that detected the wrist rotation of the glove, a nRF24L01 transmitter as well as an external power source of 9 volts. The robotic hand consisted of three-dimensional printed parts from an open source library, an Arduino Uno microcontroller, a nRF24L01 receiver, two external power supplies of 9 volts and 5 volts and six servo motors, with one servo motor per finger and wrist. The finished robotic hand did well in imitating the motions of the controller glove with little to no observed delay and was able to grip onto objects of various sizes, shapes and weights up to 134 grams. The constructed robotic hand achieved the desired goals of the project. The results indicated that improvements can be made on the grip ability of objects with rigid surfaces as well as improving the imitation by implementing more degrees of freedom for the fingers of the robotic hand. / Intresset för forskning och utveckling av humanoida robotarhar under de senaste åren varit på ständig uppfart. Applikationerna av sådana robotsystem är många och breda. Idetta kandidatarbete inom mekatronik konstruerades ettsådant robotsystem i formen av en hand. Syftet var att undersöka hur väl robothanden kunde imitera rörelserna av enanvändarburen kontrollerhandske samt hur väl den kundegreppa tag om objekt med hjälp av trådlös kommunikation. Kontrollerhanskens komponenter bestod av en Arduino Nano mikrokontroller, fem flex sensorer, en tröghetsmätenhet som mätte rotationen av handleden, en nRF24L01sändarenhet samt en extern kraftkälla på 9 volt. Robothanden bestod av tredimensionellt utskrivna delar från ettopen source bibliotek, en Arduino Uno mikrokontroller, ennRF24L01 mottagarenhet, två externa kraftkällor på 9 voltrespektive 5 volt samt sex stycken servomotorer. Varje enskild finger samt handled var kopplad till en servomotorvar. Robothanden kunde imitera kontrollhandskens rörelser med liten försening och kunde greppa tag om objekt avolika storlekar, utformningar samt vikter upp till 134 gram.Den konstruerade robothanden åstadkom de önskade målensom sattes för projektet. Resultaten indikerade att robothandens greppförmåga om föremål med styva ytor och dessimitation kan förbättras.
3

Momentum Transfer Continuum Between Preshape Andgrasping Based On Fluidics

Ozyer, Baris 01 October 2012 (has links) (PDF)
This dissertation propose a new fluidics based framework to determine a continuum between preshaping and grasping so as to appropriately preshape a multi-fingered robot hand for creating an optimal initialization of grasp. The continuum of a hand preshape closing upon an object that creates an initial object motion tendency of the object based on the impact moment patterns generated from the fingers is presented. These motion tendencies should then be suitable for the proper initiation of the grasping task. The aim is motivated by human like behavior where we preshape and land on an object to initiate a certain grasping behavior without losing the continuum during the &quot / preshaping to grasping&quot / phases. The continuity of momentum transfer phenomena is inspired by fluid dynamics that deals with fluid flow. We have adapted governing equations based on the physical principles of the fluid flow to generate momentum transfer from the robotic fingers, closing upon the object surface to fluid medium particles then from these fluid medium particles to the grasping object. Smoothed Particular Hydrodynamics (SPH) which is a mesh free particle method and finite volume approximation is used to analyze fluid flow equations. The fingers of the robotic hand and object are modeled by solidified fluid elements and also can be compliance. For evaluating the optimal grasp initialization of different hand preshape, we propose a decision support system consisting of artificial feed forward neural network based on the moment distribution on the object determines either : 1) given initial position and orientation of a robot hand, what preshape is suitable for generating a desired moment distribution on the surface of a given object in order to trigger a desired rotation in a desired direction when approaching with this preshaped hand or 2) given a predetermined hand preshape what initial position, orientation and hand aperture are suitable to generate a desired rotation upon approach and without causing the retroceeding of the object.
4

Exo-Controlled Biomimetic Robotic Hand : A design solution for control of a robotic hand with an exoskeleton

Linder-Aronson, Philip, Stenberg, Simon January 2021 (has links)
Robotic arms and hands come in all shapes and sizes, they can be general purpose or task-specific. They can be pre-programed by a computer or controlled by a human operator. There is a certain subsection of robotic hands which try to mimic the shape, movement and function of the human hand, these are sometimes known as biomimetic robotics. This project explores the human robot interaction by creating an anthropomorphic robotic hand with an accompanying exoskeleton. The hand, which consists of a 3D-printed body and fingers, is connected to a forearm where the servos that control the fingers are housed. The exoskeleton connects to the operator's hand allowing finger tracking through a set of potentiometers. This setup allows the operator to intuitively control a robotic hand with a certain degree of precision. We set out to answer research questions in regard to the form and function of a biomimetic hand and the exoskeleton. Along the way, a multitude of problems were encountered such as budgetary issues resulting in only half the fingers having movement. Despite this, good results were gathered from the functioning fingers and our research questions were answered. / Robotarmar och händer finns många former och storlekar, de kan vara för allmänna ändamål eller uppgiftsspecifika. De kan programmeras av en dator eller styras av en mänsklig operatör. Det finns en viss typ av robothänder som försöker efterlikna formen, rörelsen och funktionen hos den mänskliga handen, och brukar kallas biomimetisk robotik. Detta projekt utforskar interaktionen mellan människa och robot genom att skapa en antropomorf robothand med tillhörande exoskelett. Handen, som består av en 3D-printad kropp och fingrar, är ansluten till en underarm där servormotorerna som styr fingrarna sitter. Exoskelettet ansluts till operatörens hand vilket möjliggör spårning av fingrarnas rörelse genom ett antal potentiometrar. Detta tillåter operatören att intuitivt styra en robothand med en viss grad av precision. Vi valde att besvara ett antal forskningsfrågor med avseende på form och funktion av en biomimetisk hand och exoskelettet. Under projektets gång påträffades en mängd problem såsom budgetproblem som resulterade i att bara hälften av fingrarna kan kontrolleras. Trots detta fick vi bra resultat från de fungerande fingrarna och våra forskningsfrågor kunde besvaras.

Page generated in 0.0453 seconds