• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 50
  • 50
  • 19
  • 16
  • 12
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Low-cost Mobile Manipulator for Industrial and Research Applications

Venator, Edward Stephen 23 August 2013 (has links)
No description available.
12

The Development of a Sensitive Manipulation Platform

Cochran, Nigel B 29 May 2013 (has links)
"This thesis presents an extension of sensitive manipulation which transforms tactile sensors away from end effectors and closer to whole body sensory feedback. Sensitive manipulation is a robotics concept which more closely replicates nature by employing tactile sensing to interact with the world. While traditional robotic arms are specifically designed to avoid contact, biological systems actually embrace and intentionally contact the environment. This arm is inspired by these biological systems and therefore has compliant joints and a tactile shell surrounding the two primary links of the arm. The manipulator has also been designed to be capable of both industrial and humanoid style manipulation. There are an untold number of applications for an arm with increased tactile feedback primarily in dynamic environments such as in industrial, humanoid, and prosthetic applications. The arm developed for this thesis is intended to be a desktop research platform, however, one of the most influential applications for increased tactile feedback is in prosthetics which are operate in ever changing and contact ridden environments while continuously interacting with humans. This thesis details the simulation, design, analysis, and evaluation of a the first four degrees of freedom of a robotic arm with particular attention given to the design of modular series elastic actuators in each joint as well as the incorporation of a shell of tactile sensors. "
13

Research on remote control of reconfigurable modular robotic system

Song, Zhanglei 01 August 2009 (has links)
Serial manipulators, which have large work space with respect to their own volume and occupied floor space, are the most common industrial robots by far. However, in many environments the situation is unstructured and less predictable, such as aboard a space station, a nuclear waste retrieval site, or a lunar base construction site. It is almost impossible to design a single robotic system which can meet all the requirements for every task. In these circumstances, it is important to deploy a modular reconfigurable robotic system, which is suitable to various task requirements. Modular reconfigurable robots have a variety of attributes that are well suited to for these conditions, including: the ability to serve as many different tools at once (saving weight), packing into compressed forms (saving space) and having high levels of redundany(increasing robustness). By easy disassembly and reassembly features, this serial modular robotic system will bring advantages to small and medium enterprise to save costs in the long term. This thesis focuses on developing such a serial reconfigurable modular robotic system with remote control functionality. The robotic arms are assembled by PowerCube Modules with cubic outward appearance. The control and power electronics are fully integrated on the connector block inside of the modules. Those modules are connected in series by looping through, and can work completely independently. The communication between robotic arms and PC controller is connected by the Control Area Network bus. CAN protocol detects and corrects transmission errors caused by electromagnetic interference. The local PC can directly control the robotic arm via Visual Basic code, and it can also be treated as server controller. Client PCs can access and control the robotic arm remotely through Socket communication mechanism with certain IP address and port number. A Java3D model is created on the client PC synchronously for customers online monitoring and control. The forward and inverse kinematic analysis is solved by Vector Algebraic Method. The Neutral Network Method is also introduced to improve the kinematic analysis. Multiple-layer networks are capable of approximating any function with finite number of discontinuities. For learning the inverse kinematics neural network needs information about coordinates, joint angles and actuator positions. The desired Cartesian coordinates are given as input to the neural network that returns actuator positions as output. The robot position is simulated using these actuator positions as reference values for each actuator.
14

Towards Intelligent Telerobotics: Visualization and Control of Remote Robot

Fu, Bo 01 January 2015 (has links)
Human-machine cooperative or co-robotics has been recognized as the next generation of robotics. In contrast to current systems that use limited-reasoning strategies or address problems in narrow contexts, new co-robot systems will be characterized by their flexibility, resourcefulness, varied modeling or reasoning approaches, and use of real-world data in real time, demonstrating a level of intelligence and adaptability seen in humans and animals. The research I focused is in the two sub-field of co-robotics: teleoperation and telepresence. We firstly explore the ways of teleoperation using mixed reality techniques. I proposed a new type of display: hybrid-reality display (HRD) system, which utilizes commodity projection device to project captured video frame onto 3D replica of the actual target surface. It provides a direct alignment between the frame of reference for the human subject and that of the displayed image. The advantage of this approach lies in the fact that no wearing device needed for the users, providing minimal intrusiveness and accommodating users eyes during focusing. The field-of-view is also significantly increased. From a user-centered design standpoint, the HRD is motivated by teleoperation accidents, incidents, and user research in military reconnaissance etc. Teleoperation in these environments is compromised by the Keyhole Effect, which results from the limited field of view of reference. The technique contribution of the proposed HRD system is the multi-system calibration which mainly involves motion sensor, projector, cameras and robotic arm. Due to the purpose of the system, the accuracy of calibration should also be restricted within millimeter level. The followed up research of HRD is focused on high accuracy 3D reconstruction of the replica via commodity devices for better alignment of video frame. Conventional 3D scanner lacks either depth resolution or be very expensive. We proposed a structured light scanning based 3D sensing system with accuracy within 1 millimeter while robust to global illumination and surface reflection. Extensive user study prove the performance of our proposed algorithm. In order to compensate the unsynchronization between the local station and remote station due to latency introduced during data sensing and communication, 1-step-ahead predictive control algorithm is presented. The latency between human control and robot movement can be formulated as a linear equation group with a smooth coefficient ranging from 0 to 1. This predictive control algorithm can be further formulated by optimizing a cost function. We then explore the aspect of telepresence. Many hardware designs have been developed to allow a camera to be placed optically directly behind the screen. The purpose of such setups is to enable two-way video teleconferencing that maintains eye-contact. However, the image from the see-through camera usually exhibits a number of imaging artifacts such as low signal to noise ratio, incorrect color balance, and lost of details. Thus we develop a novel image enhancement framework that utilizes an auxiliary color+depth camera that is mounted on the side of the screen. By fusing the information from both cameras, we are able to significantly improve the quality of the see-through image. Experimental results have demonstrated that our fusion method compares favorably against traditional image enhancement/warping methods that uses only a single image.
15

Computational Modeling and Experimental Characterization of Pneumatically Driven Actuators for the Development of a Soft Robotic Arm

January 2018 (has links)
abstract: Soft Poly-Limb (SPL) is a pneumatically driven, wearable, soft continuum robotic arm designed to aid humans with medical conditions, such as cerebral palsy, paraplegia, cervical spondylotic myelopathy, perform activities of daily living. To support user's tasks, the SPL acts as an additional limb extending from the human body which can be controlled to perform safe and compliant mobile manipulation in three-dimensional space. The SPL is inspired by invertebrate limbs, such as the elephant trunk and the arms of the octopus. In this work, various geometrical and physical parameters of the SPL are identified, and behavior of the actuators that comprise it are studied by varying their parameters through novel quasi-static computational models. As a result, this study provides a set of engineering design rules to create soft actuators for continuum soft robotic arms by understanding how varying parameters affect the actuator's motion as a function of the input pressure. A prototype of the SPL is fabricated to analyze the accuracy of these computational models by performing linear expansion, bending and arbitrary pose tests. Furthermore, combinations of the parameters based on the application of the SPL are determined to affect the weight, payload capacity, and stiffness of the arm. Experimental results demonstrate the accuracy of the proposed computational models and help in understanding the behavior of soft compliant actuators. Finally, based on the set functional requirements for the assistance of impaired users, results show the effectiveness of the SPL in performing tasks for activities of daily living. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2018
16

Řízení myoelektrické protézy / Controlling of myoelectric prothesis

Tomanová, Markéta January 2014 (has links)
The Master´s thesis summarizes the knowledge about controlling of myoelectric prostheses. The Introduction part of this work provides an overview of the anatomy of muscles and their contraction. In case of restricted function of hand, it is necessary to compensate this deficiency by using prosthetic limbs. Among one of the most technically difficult is robotic prosthesis. In this semestral work is myoelectric prosthesis replaced by a robotic arm. Arm is controlled by the electromyographic signals. The signals are recorded by Biopac acquision unit, then processed in LabVIEW and robotic system is controlled by the Arduino platform.
17

Návrh univerzálního robotického systému / Design of a universal robotic system

Hudeček, Vít January 2015 (has links)
This thesis describes the design and construction of modular robotic system. Proposal of its management and simulation parameters given.
18

Platform Tilt Detection : For Drone Landing

ANUPOJU, MEHER VIJAY, PONNADA, PRUDHVI, VALLU, HARI VEERA MANI KUMAR January 2023 (has links)
This report describes a project aimed at determining the angle of the landing platform to the drones using a tilted platform, IMU, and image processing algorithms. The goal of this project is to determine the safe landing of drones and drone landings by optimizing the landing location via platform tilt adjustment and angle computation. A robotic arm was used to tilt the rectangular platform, and a web camera was used to get images from the top view. Image processing methods built-in MATLAB allow for approximate landing angle determination and angle determination is also done with IMU. The findings confirm the system’s efficiency, with reasonable angle estimates and successful drone landings.
19

Robotic Arm controlled by Arm Movements / Robotarm som följer armrörelser

Nore, Miko, Westerberg, Caspar January 2019 (has links)
In recent decades human workers in manufacturing and overall industry have largely been replaced with robots and automated machines, but there are still plenty of tasks where human cognition is necessary. This paper presents the development of a wireless robotic arm controlled by a human arm, allowing both for the combination of a robotic arms strength to be combined with a humans cognition, and also for a human to execute dynamic tasks without being present. An application suited for work in toxic or otherwise harmful environments. This was accomplished by using a controller in the form of an exo-skeleton attached to the operators right arm and connected to the robotic arm through a transmitter. The controller measures the movements in each joint using potentiometers and the robotic arm mimics these movements. A glove with a flex sensor on the index finger was then attached to the controller to measure the finger motions. All the information containing the angle of rotations are sent wirelessly to the robotic arm using Arduino Uno and transceiver modules. The robotic arm received the information through another set of Arduino Uno and transceiver module which made each servomotor on the robotic arm to move accordingly. The result showed that the robotic arm could imitate the operator’s arm very well and was able to grab and move dierent objects with dierent weight and surfaces. The wireless control was reliable and could control the robotic arm while being in a dierent room, making it possible to use this robot for harmful environments for humans. / Under senare årtionden har mänskliga arbetare inom tillverkning och industri över lag i stor utsträckning ersatts av robotar och automatiserade maskiner, men det finns fortfarande uppgifter som kräver mänsklig tankeförmåga. Denna rapport presenterar utvecklingen av en trådlös robotarm styrd av en människas arm, vilket möjliggör både att kombinera en maskins styrka med en människas intelligens, samt för en människa att utföra dynamiska uppgifter utan att vara närvarande. En applikation lämplig för arbete i farliga miljöer. Detta uppnåddes med en styrenhet i form av ett exo-skelett fastsatt på operatörens högra arm och kopplad till robotarmen genom en sändare. Styrenheten mäter rörelserna i varje led med potentiometrar och robotarmen härmar dessa rörelser. En handske med en flexsensor på pekfingret fästes sedan på styrenheten för att mäta fingerrörelsen. All information som innehåller vinklar skickas trådlöst till robotarmen med hjälp av Arduino Uno och transceiver moduler. Robotarmen mottog informationen via en annan uppsättning Arduino Uno och transceiver modul som fick varje servomotor på robotarmen att rotera i enlighet. Resultatet visade att robotarmen kunde imitera operatörens arm väl och kunde bära olika föremål med olika vikter och ytor. Den trådlösa styrningen var pålitlig och kunde styra robotarmen från ett annat rum, vilket gör det möjligt att använda denna robot i skadliga miljöer för människor.
20

A Variable Stiffness Robotic Arm Design Using Linear Actuated Compliant Parallel Guided Mechanism.

Hu, Ruiqi January 2017 (has links)
No description available.

Page generated in 0.0673 seconds